On some soluble groups in which -subgroups form a lattice
Leonid A. Kurdachenko; Igor Ya. Subbotin
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 4, page 585-593
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKurdachenko, Leonid A., and Subbotin, Igor Ya.. "On some soluble groups in which $U$-subgroups form a lattice." Commentationes Mathematicae Universitatis Carolinae 48.4 (2007): 585-593. <http://eudml.org/doc/250231>.
@article{Kurdachenko2007,
abstract = {The article is dedicated to groups in which the set of abnormal and normal subgroups ($U$-subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.},
author = {Kurdachenko, Leonid A., Subbotin, Igor Ya.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {abnormal subgroups; $U$-subgroups; counternormal subgroups; abnormal subgroups; counternormal subgroups; lattices of subgroups; soluble groups},
language = {eng},
number = {4},
pages = {585-593},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On some soluble groups in which $U$-subgroups form a lattice},
url = {http://eudml.org/doc/250231},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Kurdachenko, Leonid A.
AU - Subbotin, Igor Ya.
TI - On some soluble groups in which $U$-subgroups form a lattice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 4
SP - 585
EP - 593
AB - The article is dedicated to groups in which the set of abnormal and normal subgroups ($U$-subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.
LA - eng
KW - abnormal subgroups; $U$-subgroups; counternormal subgroups; abnormal subgroups; counternormal subgroups; lattices of subgroups; soluble groups
UR - http://eudml.org/doc/250231
ER -
References
top- Ba M.S., Borevich Z.I., On arrangement of intermediate subgroups, in: Rings and Linear Groups, Kubansk. Univ., Krasnodar, 1988, pp.14-41. MR1206023
- Carter R.W., Nilpotent self-normalizing subgroups of soluble groups, Math. Z. 75 (1961), 136-139. (1961) Zbl0168.27301MR0123603
- De Falco M., Kurdachenko L.A., Subbotin I.Ya., Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena 46 2 (1998), 435-442. (1998) Zbl0918.20017MR1665935
- Fatahi A., Groups with only normal and abnormal subgroups, J. Algebra 28 (1974), 15-19. (1974) MR0335628
- Kurdachenko L.A., Subbotin I.Ya., On transitivity of abnormality, Publ. Math. Debrecen 61 (2002), 3-4 479-486. (2002) Zbl1012.20030MR1943708
- Kurdachenko L.A., Subbotin I.Ya., On U-normal subgroups, Southeast Asian Bull. Math. 26 (2003), 789-801. (2003) Zbl1055.20027MR2045113
- Kurdachenko L.A., Subbotin I.Ya., Abnormal subgroups and Carter subgroups in some infinite groups, Algebra Discrete Math. 1 (2005), 69-83. (2005) Zbl1092.20027MR2148821
- Kuzennyi N.F., Subbotin I.Ya, New characterization of locally nilpotent -groups, Ukrain. Mat. Zh. 40 (1988), 322-326 English translation: Ukrainian Math. J. 40 (1988), 274-277. (1988) MR0952119
- Kurosh A.G., The Theory of Groups, American Mathematical Society, Providence, 1979. Zbl0111.02502
- Lennox J.C., Robinson D.J.S., The Theory of Infinite Soluble Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2004. Zbl1059.20001MR2093872
- Rose J.S., Nilpotent subgroups of finite soluble groups, Math. Z. 106 (1968), 97-112. (1968) Zbl0169.03402MR0252516
- Robinson D.J.S., A Course in the Theory of Groups, Springer, New York, 1982. Zbl0836.20001MR0648604
- Subbotin I.Ya., Groups with alternatively normal subgroups, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1992), 86-88 English translation: Soviet. Math. 3 (1992), 87-89. (1992) Zbl0816.20030MR1204823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.