Approximations by regular sets and Wiener solutions in metric spaces

Anders Björn; Jana Björn

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 2, page 343-355
  • ISSN: 0010-2628

Abstract

top
Let X be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of X can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for p -harmonic functions and to show that they coincide with three other notions of generalized solutions.

How to cite

top

Björn, Anders, and Björn, Jana. "Approximations by regular sets and Wiener solutions in metric spaces." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 343-355. <http://eudml.org/doc/250233>.

@article{Björn2007,
abstract = {Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions.},
author = {Björn, Anders, Björn, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; $p$-harmonic; Poincaré inequality; quasiharmonic; quasisuperharmonic; quasiminimizer; quasisuperminimizer; regular set; Wiener solution; axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; -harmonic},
language = {eng},
number = {2},
pages = {343-355},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximations by regular sets and Wiener solutions in metric spaces},
url = {http://eudml.org/doc/250233},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Björn, Anders
AU - Björn, Jana
TI - Approximations by regular sets and Wiener solutions in metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 343
EP - 355
AB - Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions.
LA - eng
KW - axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; $p$-harmonic; Poincaré inequality; quasiharmonic; quasisuperharmonic; quasiminimizer; quasisuperminimizer; regular set; Wiener solution; axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; -harmonic
UR - http://eudml.org/doc/250233
ER -

References

top
  1. Bauer H., Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer, Berlin-New York, 1966. Zbl0142.38402MR0210916
  2. Björn A., Characterizations of p -superharmonic functions on metric spaces, Studia Math. 169 (2005), 45-62. (2005) Zbl1079.31006MR2139641
  3. Björn A., A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809-825. (2006) Zbl1105.31007MR2271223
  4. Björn A., Björn J., Boundary regularity for p -harmonic functions and solutions of the obstacle problem, J. Math. Soc. Japan 58 (2006), 1211-1232. (2006) Zbl1211.35109MR2276190
  5. Björn A., Björn J., Shanmugalingam N., The Dirichlet problem for p -harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173-203. (2003) Zbl1018.31004MR1971145
  6. Björn A., Björn J., Shanmugalingam N., The Perron method for p -harmonic functions, J. Differential Equations 195 (2003), 398-429. (2003) Zbl1039.35033MR2016818
  7. Björn J., Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), 383-403. (2002) Zbl1026.49029MR1936925
  8. Björn J., MacManus P., Shanmugalingam N., Fat sets and pointwise boundary estimates for p -harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339-369. (2001) Zbl1003.31004MR1869615
  9. Björn J., Shanmugalingam N., Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces, to appear in J. Math. Anal. Appl. MR2319654
  10. Cheeger J., Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. 9 (1999), 428-517. (1999) MR1708448
  11. Hajłasz, P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). (2000) MR1683160
  12. Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993. MR1207810
  13. Heinonen J., Koskela P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61. (1998) Zbl0915.30018MR1654771
  14. Keith S., Zhong X., The Poincaré inequality is an open ended condition, preprint, Jyväskylä, 2003. MR2415381
  15. Kilpeläinen T., Malý J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161. (1994) MR1264000
  16. Kinnunen J., Martio O., Nonlinear potential theory on metric spaces, Illinois Math. J. 46 (2002), 857-883. (2002) MR1951245
  17. Kinnunen J., Martio O., Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490. (2003) Zbl1035.31007MR1996447
  18. Lehtola P., An axiomatic approach to nonlinear potential theory, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40. (1986) Zbl0695.31014MR0879323
  19. Maz'ya V.G., On the continuity at a boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242. (1970) MR0274948
  20. Perron O., Eine neue Behandlung der ersten Randwertaufgabe für Δ u = 0 , Math. Z. 18 (1923), 42-54. (1923) MR1544619
  21. Shanmugalingam N., Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243-279. (2000) Zbl0974.46038MR1809341
  22. Shanmugalingam N., Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021-1050. (2001) Zbl0989.31003MR1879250
  23. Shanmugalingam N., Some convergence results for p -harmonic functions on metric measure spaces, Proc. London Math. Soc. 87 (2003), 226-246. (2003) Zbl1034.31006MR1978575
  24. Wiener N., Certain notions in potential theory, J. Math. Phys. 3 (1924), 24-51. (1924) 
  25. Wiener N., The Dirichlet problem, J. Math. Phys. 3 (1924), 127-146. (1924) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.