Approximations by regular sets and Wiener solutions in metric spaces
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 2, page 343-355
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBjörn, Anders, and Björn, Jana. "Approximations by regular sets and Wiener solutions in metric spaces." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 343-355. <http://eudml.org/doc/250233>.
@article{Björn2007,
abstract = {Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions.},
author = {Björn, Anders, Björn, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; $p$-harmonic; Poincaré inequality; quasiharmonic; quasisuperharmonic; quasiminimizer; quasisuperminimizer; regular set; Wiener solution; axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; -harmonic},
language = {eng},
number = {2},
pages = {343-355},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximations by regular sets and Wiener solutions in metric spaces},
url = {http://eudml.org/doc/250233},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Björn, Anders
AU - Björn, Jana
TI - Approximations by regular sets and Wiener solutions in metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 343
EP - 355
AB - Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions.
LA - eng
KW - axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; $p$-harmonic; Poincaré inequality; quasiharmonic; quasisuperharmonic; quasiminimizer; quasisuperminimizer; regular set; Wiener solution; axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; -harmonic
UR - http://eudml.org/doc/250233
ER -
References
top- Bauer H., Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer, Berlin-New York, 1966. Zbl0142.38402MR0210916
- Björn A., Characterizations of -superharmonic functions on metric spaces, Studia Math. 169 (2005), 45-62. (2005) Zbl1079.31006MR2139641
- Björn A., A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809-825. (2006) Zbl1105.31007MR2271223
- Björn A., Björn J., Boundary regularity for -harmonic functions and solutions of the obstacle problem, J. Math. Soc. Japan 58 (2006), 1211-1232. (2006) Zbl1211.35109MR2276190
- Björn A., Björn J., Shanmugalingam N., The Dirichlet problem for -harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173-203. (2003) Zbl1018.31004MR1971145
- Björn A., Björn J., Shanmugalingam N., The Perron method for -harmonic functions, J. Differential Equations 195 (2003), 398-429. (2003) Zbl1039.35033MR2016818
- Björn J., Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), 383-403. (2002) Zbl1026.49029MR1936925
- Björn J., MacManus P., Shanmugalingam N., Fat sets and pointwise boundary estimates for -harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339-369. (2001) Zbl1003.31004MR1869615
- Björn J., Shanmugalingam N., Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces, to appear in J. Math. Anal. Appl. MR2319654
- Cheeger J., Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. 9 (1999), 428-517. (1999) MR1708448
- Hajłasz, P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). (2000) MR1683160
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993. MR1207810
- Heinonen J., Koskela P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61. (1998) Zbl0915.30018MR1654771
- Keith S., Zhong X., The Poincaré inequality is an open ended condition, preprint, Jyväskylä, 2003. MR2415381
- Kilpeläinen T., Malý J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161. (1994) MR1264000
- Kinnunen J., Martio O., Nonlinear potential theory on metric spaces, Illinois Math. J. 46 (2002), 857-883. (2002) MR1951245
- Kinnunen J., Martio O., Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490. (2003) Zbl1035.31007MR1996447
- Lehtola P., An axiomatic approach to nonlinear potential theory, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40. (1986) Zbl0695.31014MR0879323
- Maz'ya V.G., On the continuity at a boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242. (1970) MR0274948
- Perron O., Eine neue Behandlung der ersten Randwertaufgabe für , Math. Z. 18 (1923), 42-54. (1923) MR1544619
- Shanmugalingam N., Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243-279. (2000) Zbl0974.46038MR1809341
- Shanmugalingam N., Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021-1050. (2001) Zbl0989.31003MR1879250
- Shanmugalingam N., Some convergence results for -harmonic functions on metric measure spaces, Proc. London Math. Soc. 87 (2003), 226-246. (2003) Zbl1034.31006MR1978575
- Wiener N., Certain notions in potential theory, J. Math. Phys. 3 (1924), 24-51. (1924)
- Wiener N., The Dirichlet problem, J. Math. Phys. 3 (1924), 127-146. (1924)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.