The jet prolongations of 2 -fibred manifolds and the flow operator

Włodzimierz M. Mikulski

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 1, page 17-21
  • ISSN: 0044-8753

Abstract

top
Let r , s , m , n , q be natural numbers such that s r . We prove that any 2 - 𝕄 m , n , q -natural operator A : T 2-proj T J ( s , r ) transforming 2 -projectable vector fields V on ( m , n , q ) -dimensional 2 -fibred manifolds Y X M into vector fields A ( V ) on the ( s , r ) -jet prolongation bundle J ( s , r ) Y is a constant multiple of the flow operator 𝒥 ( s , r ) .

How to cite

top

Mikulski, Włodzimierz M.. "The jet prolongations of $2$-fibred manifolds and the flow operator." Archivum Mathematicum 044.1 (2008): 17-21. <http://eudml.org/doc/250287>.

@article{Mikulski2008,
abstract = {Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-$\{\mathcal \{F\}\}\mathbb \{M\}_\{m,n,q\}$-natural operator $A\colon T_\{\operatorname\{2-proj\}\}\rightsquigarrow TJ^\{(s,r)\}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^\{(s,r)\}Y$ is a constant multiple of the flow operator $\mathcal \{J\}^\{(s,r)\}$.},
author = {Mikulski, Włodzimierz M.},
journal = {Archivum Mathematicum},
keywords = {$(s,r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field; -jet; bundle functor; natural operator; flow operator; 2-fibred manifold; 2-projectable vector field},
language = {eng},
number = {1},
pages = {17-21},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The jet prolongations of $2$-fibred manifolds and the flow operator},
url = {http://eudml.org/doc/250287},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - The jet prolongations of $2$-fibred manifolds and the flow operator
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 17
EP - 21
AB - Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal {F}}\mathbb {M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal {J}^{(s,r)}$.
LA - eng
KW - $(s,r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field; -jet; bundle functor; natural operator; flow operator; 2-fibred manifold; 2-projectable vector field
UR - http://eudml.org/doc/250287
ER -

References

top
  1. Cabras, A., Janyška, J., Kolář, I., On the geometry of variational calculus on some functional bundles, Note Mat. 26 (2) (2006), 51–57. (2006) Zbl1195.58007MR2298069
  2. Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag Berlin, 1993. (1993) MR1202431
  3. Mikulski, W. M., The jet prolongations of fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441–458. (2001) MR1874443
  4. Mikulski, W. M., 10.4064/ap81-3-4, Ann. Polon. Math. 81 (3) (2003), 261–271. (2003) Zbl1099.58003MR2044627DOI10.4064/ap81-3-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.