On the oscillatory integration of some ordinary differential equations

Octavian G. Mustafa

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 1, page 23-36
  • ISSN: 0044-8753

Abstract

top
Conditions are given for a class of nonlinear ordinary differential equations x ' ' + a ( t ) w ( x ) = 0 , t t 0 1 , which includes the linear equation to possess solutions x ( t ) with prescribed oblique asymptote that have an oscillatory pseudo-wronskian x ' ( t ) - x ( t ) t .

How to cite

top

Mustafa, Octavian G.. "On the oscillatory integration of some ordinary differential equations." Archivum Mathematicum 044.1 (2008): 23-36. <http://eudml.org/doc/250295>.

@article{Mustafa2008,
abstract = {Conditions are given for a class of nonlinear ordinary differential equations $x^\{\prime \prime \}+a(t)w(x)=0$, $t\ge t_0\ge 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^\{\prime \}(t)-\frac\{x(t)\}\{t\}$.},
author = {Mustafa, Octavian G.},
journal = {Archivum Mathematicum},
keywords = {ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation of solutions; ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation},
language = {eng},
number = {1},
pages = {23-36},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the oscillatory integration of some ordinary differential equations},
url = {http://eudml.org/doc/250295},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Mustafa, Octavian G.
TI - On the oscillatory integration of some ordinary differential equations
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 23
EP - 36
AB - Conditions are given for a class of nonlinear ordinary differential equations $x^{\prime \prime }+a(t)w(x)=0$, $t\ge t_0\ge 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^{\prime }(t)-\frac{x(t)}{t}$.
LA - eng
KW - ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation of solutions; ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation
UR - http://eudml.org/doc/250295
ER -

References

top
  1. Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., 10.1016/j.cam.2005.11.038, J. Comput. Appl. Math. 202 (2007), 352–376. (2007) Zbl1123.34038MR2319962DOI10.1016/j.cam.2005.11.038
  2. Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., Rogovchenko, Yu. V., On the asymptotic behavior of solutions to nonlinear ordinary differential equations, Asymptot. Anal. 54 (2007), 1–50. (2007) MR2356463
  3. Agarwal, R. P., Mustafa, O. G., 10.1016/j.aml.2006.11.015, Appl. Math. Lett. 20 (2007), 1206–1210. (2007) Zbl1137.35356MR2384247DOI10.1016/j.aml.2006.11.015
  4. Atkinson, F. V., 10.2140/pjm.1955.5.643, Pacific J. Math. 5 (1995), 643–647. (1995) MR0072316DOI10.2140/pjm.1955.5.643
  5. Bartušek, M., Došlá, Z., Graef, J. R., The nonlinear limit-point/limit-circle problem, limit-circle problem, Birkhäuser, Boston, 2004. (2004) Zbl1052.34021MR2020682
  6. Cecchi, M., Marini, M., Villari, G., 10.1016/0022-0396(92)90027-K, J. Differential Equations 99 (1992), 381–397. (1992) Zbl0761.34009MR1184060DOI10.1016/0022-0396(92)90027-K
  7. Cecchi, M., Marini, M., Villari, G., 10.1007/s000300050071, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 173–190. (1999) Zbl0927.34023MR1694795DOI10.1007/s000300050071
  8. Constantin, A., 10.1017/S0004972700015148, Bull. Austral. Math. Soc. 54 (1996), 147–154. (1996) Zbl0878.35040MR1402999DOI10.1017/S0004972700015148
  9. Constantin, A., 10.1006/jmaa.1997.5541, J. Math. Anal. Appl. 213 (1997), 334–339. (1997) Zbl0891.35033MR1469378DOI10.1006/jmaa.1997.5541
  10. Deng, J., 10.1016/j.jmaa.2007.03.071, J. Math. Anal. Appl. 336 (2007), 1395–1405. (2007) Zbl1152.35367MR2353022DOI10.1016/j.jmaa.2007.03.071
  11. Djebali, S., Moussaoui, T., Mustafa, O. G., 10.1016/j.jmaa.2006.12.004, J. Math. Anal. Appl. 333 (2007), 863–870. (2007) Zbl1155.35029MR2331699DOI10.1016/j.jmaa.2006.12.004
  12. Dugundji, J., Granas, A., Fixed point theory I, Polish Sci. Publ., Warszawa, 1982. (1982) MR0660439
  13. Ehrnström, M., 10.1016/j.na.2005.07.010, Nonlinear Anal. 64 (2006), 1608–1620. (2006) Zbl1101.34022MR2200162DOI10.1016/j.na.2005.07.010
  14. Ehrnström, M., Mustafa, O. G., 10.1016/j.na.2006.07.002, Nonlinear Anal. 67 (2007), 1147–1154. (2007) Zbl1165.35016MR2325368DOI10.1016/j.na.2006.07.002
  15. Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 2001. (2001) Zbl1042.35002MR1814364
  16. Hartman, P., 10.2307/2372004, Amer. J. Math. 74 (1952), 389–400. (1952) Zbl0048.06602MR0048667DOI10.2307/2372004
  17. Heidel, J. W., 10.1090/S0002-9939-1969-0248396-0, Proc. Amer. Math. Soc. 22 (1969), 485–488. (1969) Zbl0169.42203MR0248396DOI10.1090/S0002-9939-1969-0248396-0
  18. Hesaaraki, M., Moradifam, A., 10.1016/j.aml.2007.03.001, Appl. Math. Lett. 20 (2007), 1227–1231. (2007) Zbl1137.35429MR2384252DOI10.1016/j.aml.2007.03.001
  19. Kiguradze, I. T., Chanturia, T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht, 1993. (1993) Zbl0782.34002
  20. Mustafa, O. G., 10.1016/j.aml.2004.07.036, Appl. Math. Lett. 18 (2005), 931–934. (2005) Zbl1095.34505MR2152306DOI10.1016/j.aml.2004.07.036
  21. Mustafa, O. G., 10.1017/S0017089504002228, Glasgow Math. J. 47 (2005), 177–185. (2005) Zbl1072.34049MR2200965DOI10.1017/S0017089504002228
  22. Mustafa, O. G., Rogovchenko, Yu. V., 10.1619/fesi.47.167, Funkcial. Ekvac. 47 (2004), 167–186. (2004) Zbl1118.34046MR2108671DOI10.1619/fesi.47.167
  23. Mustafa, O. G., Rogovchenko, Yu. V., 10.1016/j.jmaa.2004.02.029, J. Math. Anal. Appl. 294 (2004), 548–559. (2004) Zbl1057.34023MR2061342DOI10.1016/j.jmaa.2004.02.029
  24. Mustafa, O. G., Rogovchenko, Yu. V., 10.1016/j.aml.2005.10.013, Appl. Math. Lett. 19 (2006), 849–853. (2006) Zbl1126.34339MR2240473DOI10.1016/j.aml.2005.10.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.