On the oscillatory integration of some ordinary differential equations
Archivum Mathematicum (2008)
- Volume: 044, Issue: 1, page 23-36
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMustafa, Octavian G.. "On the oscillatory integration of some ordinary differential equations." Archivum Mathematicum 044.1 (2008): 23-36. <http://eudml.org/doc/250295>.
@article{Mustafa2008,
abstract = {Conditions are given for a class of nonlinear ordinary differential equations $x^\{\prime \prime \}+a(t)w(x)=0$, $t\ge t_0\ge 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^\{\prime \}(t)-\frac\{x(t)\}\{t\}$.},
author = {Mustafa, Octavian G.},
journal = {Archivum Mathematicum},
keywords = {ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation of solutions; ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation},
language = {eng},
number = {1},
pages = {23-36},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the oscillatory integration of some ordinary differential equations},
url = {http://eudml.org/doc/250295},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Mustafa, Octavian G.
TI - On the oscillatory integration of some ordinary differential equations
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 23
EP - 36
AB - Conditions are given for a class of nonlinear ordinary differential equations $x^{\prime \prime }+a(t)w(x)=0$, $t\ge t_0\ge 1$, which includes the linear equation to possess solutions $x(t)$ with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x^{\prime }(t)-\frac{x(t)}{t}$.
LA - eng
KW - ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation of solutions; ordinary differential equation; asymptotic integration; prescribed asymptote; non-oscillation
UR - http://eudml.org/doc/250295
ER -
References
top- Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., 10.1016/j.cam.2005.11.038, J. Comput. Appl. Math. 202 (2007), 352–376. (2007) Zbl1123.34038MR2319962DOI10.1016/j.cam.2005.11.038
- Agarwal, R. P., Djebali, S., Moussaoui, T., Mustafa, O. G., Rogovchenko, Yu. V., On the asymptotic behavior of solutions to nonlinear ordinary differential equations, Asymptot. Anal. 54 (2007), 1–50. (2007) MR2356463
- Agarwal, R. P., Mustafa, O. G., 10.1016/j.aml.2006.11.015, Appl. Math. Lett. 20 (2007), 1206–1210. (2007) Zbl1137.35356MR2384247DOI10.1016/j.aml.2006.11.015
- Atkinson, F. V., 10.2140/pjm.1955.5.643, Pacific J. Math. 5 (1995), 643–647. (1995) MR0072316DOI10.2140/pjm.1955.5.643
- Bartušek, M., Došlá, Z., Graef, J. R., The nonlinear limit-point/limit-circle problem, limit-circle problem, Birkhäuser, Boston, 2004. (2004) Zbl1052.34021MR2020682
- Cecchi, M., Marini, M., Villari, G., 10.1016/0022-0396(92)90027-K, J. Differential Equations 99 (1992), 381–397. (1992) Zbl0761.34009MR1184060DOI10.1016/0022-0396(92)90027-K
- Cecchi, M., Marini, M., Villari, G., 10.1007/s000300050071, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 173–190. (1999) Zbl0927.34023MR1694795DOI10.1007/s000300050071
- Constantin, A., 10.1017/S0004972700015148, Bull. Austral. Math. Soc. 54 (1996), 147–154. (1996) Zbl0878.35040MR1402999DOI10.1017/S0004972700015148
- Constantin, A., 10.1006/jmaa.1997.5541, J. Math. Anal. Appl. 213 (1997), 334–339. (1997) Zbl0891.35033MR1469378DOI10.1006/jmaa.1997.5541
- Deng, J., 10.1016/j.jmaa.2007.03.071, J. Math. Anal. Appl. 336 (2007), 1395–1405. (2007) Zbl1152.35367MR2353022DOI10.1016/j.jmaa.2007.03.071
- Djebali, S., Moussaoui, T., Mustafa, O. G., 10.1016/j.jmaa.2006.12.004, J. Math. Anal. Appl. 333 (2007), 863–870. (2007) Zbl1155.35029MR2331699DOI10.1016/j.jmaa.2006.12.004
- Dugundji, J., Granas, A., Fixed point theory I, Polish Sci. Publ., Warszawa, 1982. (1982) MR0660439
- Ehrnström, M., 10.1016/j.na.2005.07.010, Nonlinear Anal. 64 (2006), 1608–1620. (2006) Zbl1101.34022MR2200162DOI10.1016/j.na.2005.07.010
- Ehrnström, M., Mustafa, O. G., 10.1016/j.na.2006.07.002, Nonlinear Anal. 67 (2007), 1147–1154. (2007) Zbl1165.35016MR2325368DOI10.1016/j.na.2006.07.002
- Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 2001. (2001) Zbl1042.35002MR1814364
- Hartman, P., 10.2307/2372004, Amer. J. Math. 74 (1952), 389–400. (1952) Zbl0048.06602MR0048667DOI10.2307/2372004
- Heidel, J. W., 10.1090/S0002-9939-1969-0248396-0, Proc. Amer. Math. Soc. 22 (1969), 485–488. (1969) Zbl0169.42203MR0248396DOI10.1090/S0002-9939-1969-0248396-0
- Hesaaraki, M., Moradifam, A., 10.1016/j.aml.2007.03.001, Appl. Math. Lett. 20 (2007), 1227–1231. (2007) Zbl1137.35429MR2384252DOI10.1016/j.aml.2007.03.001
- Kiguradze, I. T., Chanturia, T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht, 1993. (1993) Zbl0782.34002
- Mustafa, O. G., 10.1016/j.aml.2004.07.036, Appl. Math. Lett. 18 (2005), 931–934. (2005) Zbl1095.34505MR2152306DOI10.1016/j.aml.2004.07.036
- Mustafa, O. G., 10.1017/S0017089504002228, Glasgow Math. J. 47 (2005), 177–185. (2005) Zbl1072.34049MR2200965DOI10.1017/S0017089504002228
- Mustafa, O. G., Rogovchenko, Yu. V., 10.1619/fesi.47.167, Funkcial. Ekvac. 47 (2004), 167–186. (2004) Zbl1118.34046MR2108671DOI10.1619/fesi.47.167
- Mustafa, O. G., Rogovchenko, Yu. V., 10.1016/j.jmaa.2004.02.029, J. Math. Anal. Appl. 294 (2004), 548–559. (2004) Zbl1057.34023MR2061342DOI10.1016/j.jmaa.2004.02.029
- Mustafa, O. G., Rogovchenko, Yu. V., 10.1016/j.aml.2005.10.013, Appl. Math. Lett. 19 (2006), 849–853. (2006) Zbl1126.34339MR2240473DOI10.1016/j.aml.2005.10.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.