Weakly infinite-dimensional compactifications and countable-dimensional compactifications

Takashi Kimura; Chieko Komoda

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 147-154
  • ISSN: 0010-2628

Abstract

top
In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.

How to cite

top

Kimura, Takashi, and Komoda, Chieko. "Weakly infinite-dimensional compactifications and countable-dimensional compactifications." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 147-154. <http://eudml.org/doc/250299>.

@article{Kimura2008,
abstract = {In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.},
author = {Kimura, Takashi, Komoda, Chieko},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {S-weakly infinite-dimensional; countable-dimensional; compactification; -weakly infinite-dimensional; countable-dimensional; compactification},
language = {eng},
number = {1},
pages = {147-154},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weakly infinite-dimensional compactifications and countable-dimensional compactifications},
url = {http://eudml.org/doc/250299},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Kimura, Takashi
AU - Komoda, Chieko
TI - Weakly infinite-dimensional compactifications and countable-dimensional compactifications
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 147
EP - 154
AB - In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.
LA - eng
KW - S-weakly infinite-dimensional; countable-dimensional; compactification; -weakly infinite-dimensional; countable-dimensional; compactification
UR - http://eudml.org/doc/250299
ER -

References

top
  1. Borst P., 10.1016/0166-8641(85)90015-X, Topology Appl. 21 (1985), 261-268. (1985) Zbl0587.54055MR0812644DOI10.1016/0166-8641(85)90015-X
  2. Borst P., Some remarks concerning C -spaces, Topology Appl. 154 (2007), 665-674. (2007) Zbl1116.54018MR2280911
  3. Engelking R., Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
  4. Engelking R., Pol E., Countable-dimensional spaces: a survey, Dissertationes Math. 216 (1983). (1983) Zbl0541.54042MR0722011
  5. Engelking R., Pol R., Compactifications of countable-dimensional and strongly countable-dimensional spaces, Proc. Amer. Math. Soc. 104 (1988), 985-987. (1988) Zbl0691.54015MR0964883
  6. Kimura T., Komoda C., Spaces having a compactification which is a C -space, Topology Appl. 143 (2004), 87-92. (2004) Zbl1055.54009MR2080284
  7. Misra A.K., Some regular Wallman β X , Indag. Math. 35 (1973), 237-242. (1973) Zbl0258.54022MR0324653
  8. Nagata J., Modern Dimension Theory, Groningen, 1965. Zbl0518.54002
  9. Nagami K., Roberts J.H., A note on countable-dimensional metric spaces, Proc. Japan Acad. 41 (1965), 155-158. (1965) Zbl0132.18601MR0187204
  10. Schurle A.W., Compactification of strongly countable-dimensional spaces, Trans. Amer. Math. Soc. 136 (1969), 25-32. (1969) Zbl0175.19902MR0234423

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.