Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
Diabate Nabongo; Théodore K. Boni
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 463-475
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNabongo, Diabate, and Boni, Théodore K.. "Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 463-475. <http://eudml.org/doc/250301>.
@article{Nabongo2008,
abstract = {This paper concerns the study of the numerical approximation for the following boundary value problem: \[ \left\lbrace \begin\{array\}\{ll\}u\_t(x,t)-u\_\{xx\}(x,t) = -u^\{-p\}(x,t), & 0<x<1, t>0, \ u\_\{x\}(0,t)=0, & u(1,t)=1, t>0, \ u(x,0)=u\_\{0\}(x)>0, & 0\le x \le 1, \end\{array\}\right.\]
where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.},
author = {Nabongo, Diabate, Boni, Théodore K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence; semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence},
language = {eng},
number = {3},
pages = {463-475},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions},
url = {http://eudml.org/doc/250301},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Nabongo, Diabate
AU - Boni, Théodore K.
TI - Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 463
EP - 475
AB - This paper concerns the study of the numerical approximation for the following boundary value problem: \[ \left\lbrace \begin{array}{ll}u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), & 0<x<1, t>0, \ u_{x}(0,t)=0, & u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, & 0\le x \le 1, \end{array}\right.\]
where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
LA - eng
KW - semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence; semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence
UR - http://eudml.org/doc/250301
ER -
References
top- Abia L.M., López-Marcos J.C., Martinez J., 10.1016/S0168-9274(97)00105-0, Appl. Numer. Math. 26 (1998), 399-414. (1998) MR1612360DOI10.1016/S0168-9274(97)00105-0
- Acker A., Kawohl B., 10.1016/0362-546X(89)90034-5, Nonlinear Anal. 13 (1989), 53-61. (1989) Zbl0676.35021MR0973368DOI10.1016/0362-546X(89)90034-5
- Boni T.K., 10.1016/S0764-4442(01)02078-X, C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. (2001) Zbl0999.35004MR1868956DOI10.1016/S0764-4442(01)02078-X
- Boni T.K., On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 73-95. (2000) Zbl0969.35077MR1741748
- Fila M., Kawohl B., Levine H.A., Quenching for quasilinear equations, Comm. Partial Differential Equations 17 (1992), 593-614. (1992) Zbl0801.35057MR1163438
- Guo J.S., Hu B., The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc. 40 (1997), 437-456. (1997) Zbl0903.35007MR1475908
- Guo J., 10.1016/0362-546X(91)90154-S, Nonlinear Anal. 17 (1991), 803-809. (1991) MR1131490DOI10.1016/0362-546X(91)90154-S
- Levine H.A., Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Annali Mat. Pura Appl. 155 (1990), 243-260. (1990) MR1042837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.