# Viscosity solutions methods for converse KAM theory

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 42, Issue: 6, page 1047-1064
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topGomes, Diogo A., and Oberman, Adam. "Viscosity solutions methods for converse KAM theory." ESAIM: Mathematical Modelling and Numerical Analysis 42.6 (2008): 1047-1064. <http://eudml.org/doc/250359>.

@article{Gomes2008,

abstract = {
The main objective of this paper is to prove
new necessary conditions to the existence of
KAM tori.
To do so, we develop a
set of
explicit a-priori estimates for smooth
solutions of Hamilton-Jacobi equations,
using a combination of methods from
viscosity solutions,
KAM and Aubry-Mather theories.
These estimates
are valid
in any
space dimension, and can be checked numerically
to detect gaps between KAM tori and Aubry-Mather sets.
We apply these results to detect non-integrable regions in
several
examples such as
a forced pendulum, two coupled penduli, and
the double pendulum.
},

author = {Gomes, Diogo A., Oberman, Adam},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Aubry-Mather theory; Hamilton-Jacobi integrability; viscosity solutions.; viscosity solutions},

language = {eng},

month = {9},

number = {6},

pages = {1047-1064},

publisher = {EDP Sciences},

title = {Viscosity solutions methods for converse KAM theory},

url = {http://eudml.org/doc/250359},

volume = {42},

year = {2008},

}

TY - JOUR

AU - Gomes, Diogo A.

AU - Oberman, Adam

TI - Viscosity solutions methods for converse KAM theory

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/9//

PB - EDP Sciences

VL - 42

IS - 6

SP - 1047

EP - 1064

AB -
The main objective of this paper is to prove
new necessary conditions to the existence of
KAM tori.
To do so, we develop a
set of
explicit a-priori estimates for smooth
solutions of Hamilton-Jacobi equations,
using a combination of methods from
viscosity solutions,
KAM and Aubry-Mather theories.
These estimates
are valid
in any
space dimension, and can be checked numerically
to detect gaps between KAM tori and Aubry-Mather sets.
We apply these results to detect non-integrable regions in
several
examples such as
a forced pendulum, two coupled penduli, and
the double pendulum.

LA - eng

KW - Aubry-Mather theory; Hamilton-Jacobi integrability; viscosity solutions.; viscosity solutions

UR - http://eudml.org/doc/250359

ER -

## References

top- V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical aspects of classical and celestial mechanics. Springer-Verlag, Berlin (1997). Translated from the 1985 Russian original by A. Iacob, reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems III, Encyclopaedia Math. Sci.3, Springer, Berlin (1993) MR 95d:58043a].
- W.E. Aubry, Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math.52 (1999) 811–828.
- M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). Zbl0890.49011
- U. Bessi, An analytic counterexample to the KAM theorem. Ergod. Theory Dyn. Syst.20 (2000) 317–333. Zbl0959.37045
- A. Biryuk and D. Gomes, An introduction to the Aubry-Mather theory. São Paulo Journal of Mathematical Sciences (to appear). Zbl1243.49001
- G. Contreras, R. Iturriaga, G.P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values. Geom. Funct. Anal.8 (1998) 788–809. Zbl0920.58015
- L.C. Evans, Partial differential equations. American Mathematical Society, Providence, RI, USA (1998). Zbl0902.35002
- L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal.157 (2001) 1–33. Zbl0986.37056
- L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal.161 (2002) 271–305. Zbl1100.37039
- A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 649–652. Zbl0943.37031
- A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 1043–1046.
- A. Fathi, Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 1213–1216. Zbl0915.58033
- A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 267–270. Zbl1052.37514
- A. Fathi and A. Siconolfi, Existence of ${C}^{1}$ critical subsolutions of the Hamilton-Jacobi equation. Invent. Math.155 (2004) 363–388. Zbl1061.58008
- W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag, New York (1993). Zbl0773.60070
- G. Forni, Analytic destruction of invariant circles. Ergod. Theory Dyn. Syst.14 (1994) 267–298. Zbl0817.58018
- G. Forni, Construction of invariant measures supported within the gaps of Aubry-Mather sets. Ergod. Theory Dyn. Syst.16 (1996) 51–86. Zbl0856.58024
- H. Goldstein, Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition (1980). Zbl0491.70001
- D.A. Gomes, Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations14 (2002) 345–357. Zbl1005.49027
- D.A. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal.35 (2003) 135–147 (electronic). Zbl1034.37035
- D.A. Gomes, Duality principles for fully nonlinear elliptic equations, in Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl.61, Birkhäuser, Basel (2005) 125–136. Zbl1237.35053
- D.A. Gomes and A.M. Oberman, Computing the effective Hamiltonian using a variational approach. SIAM J. Contr. Opt.43 (2004) 792–812 (electronic). Zbl1081.49024
- D.A. Gomes and E. Valdinoci, Lack of integrability via viscosity solution methods. Indiana Univ. Math. J.53 (2004) 1055–1071. Zbl1081.35023
- À. Haro, Converse KAM theory for monotone positive symplectomorphisms. Nonlinearity12 (1999) 1299–1322. Zbl0949.37059
- A. Knauf, Closed orbits and converse KAM theory. Nonlinearity3 (1990) 961–973. Zbl0702.70013
- P.L. Lions and P. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Math. Appl.56 (2003) 1501–1524. Zbl1050.35012
- P.L. Lions, G. Papanicolao and S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988).
- R.S. MacKay, Converse KAM theory, in Singular behavior and nonlinear dynamics, Vol. 1 (Sámos, 1988), World Sci. Publishing, Teaneck, USA (1989) 109–113.
- R.S. MacKay and I.C. Percival, Converse KAM: theory and practice. Comm. Math. Phys.98 (1985) 469–512.
- R.S. MacKay, J.D. Meiss and J. Stark, Converse KAM theory for symplectic twist maps. Nonlinearity2 (1989) 555–570. Zbl0699.58030
- R. Mañé, On the minimizing measures of Lagrangian dynamical systems. Nonlinearity5 (1992) 623–638. Zbl0799.58030
- R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity9 (1996) 273–310. Zbl0886.58037
- J.N. Mather, Minimal action measures for positive-definite Lagrangian systems, in IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol (1989) 466–468. Zbl0850.70195
- J.N. Mather, Minimal measures. Comment. Math. Helv.64 (1989) 375–394. Zbl0689.58025
- J.N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z.207 (1991) 169–207. Zbl0696.58027
- J. Qian, Two approximations for effective hamiltonians arising from homogenization of Hamilton-Jacobi equations. Preprint (2003).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.