A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata

Daniel Kirsten

RAIRO - Theoretical Informatics and Applications (2008)

  • Volume: 42, Issue: 3, page 553-581
  • ISSN: 0988-3754

Abstract

top
We show that the termination of Mohri's algorithm is decidable for polynomially ambiguous weighted finite automata over the tropical semiring which gives a partial answer to a question by Mohri [29]. The proof relies on an improvement of the notion of the twins property and a Burnside type characterization for the finiteness of the set of states produced by Mohri's algorithm.

How to cite

top

Kirsten, Daniel. "A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata." RAIRO - Theoretical Informatics and Applications 42.3 (2008): 553-581. <http://eudml.org/doc/250380>.

@article{Kirsten2008,
abstract = { We show that the termination of Mohri's algorithm is decidable for polynomially ambiguous weighted finite automata over the tropical semiring which gives a partial answer to a question by Mohri [29]. The proof relies on an improvement of the notion of the twins property and a Burnside type characterization for the finiteness of the set of states produced by Mohri's algorithm. },
author = {Kirsten, Daniel},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Weighted automata; tropical semiring; determinization.},
language = {eng},
month = {6},
number = {3},
pages = {553-581},
publisher = {EDP Sciences},
title = {A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata},
url = {http://eudml.org/doc/250380},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Kirsten, Daniel
TI - A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata
JO - RAIRO - Theoretical Informatics and Applications
DA - 2008/6//
PB - EDP Sciences
VL - 42
IS - 3
SP - 553
EP - 581
AB - We show that the termination of Mohri's algorithm is decidable for polynomially ambiguous weighted finite automata over the tropical semiring which gives a partial answer to a question by Mohri [29]. The proof relies on an improvement of the notion of the twins property and a Burnside type characterization for the finiteness of the set of states produced by Mohri's algorithm.
LA - eng
KW - Weighted automata; tropical semiring; determinization.
UR - http://eudml.org/doc/250380
ER -

References

top
  1. C. Allauzen and M. Mohri, Efficient algorithms for testing the twins property. Journal of Automata, Languages and Combinatorics8 (2003) 117–144.  
  2. J. Berstel and C. Reutenauer, Rational Series and Their Languages, volume 12 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg New York (1984).  
  3. A.L. Buchsbaum, R. Giancarlo and J.R. Westbrook, On the determinization of weighted finite automata. SIAM Journal of Computing (2000) 1502–1531.  
  4. J. Chalopin and H. Leung, A note on factorization forests of finite height. Theoretical Computer Science310 (2004) 489–499.  
  5. C. Choffrut, Une caracterisation des fonctions sequentielles et des fonctions sous-sequentielles en tant que relations rationnelles. Theoretical Computer Science5 (1977) 325–337.  
  6. K. Culik II and J. Kari, Image compression using weighted finite automata. Computer and Graphics17 (1993) 305–313.  
  7. G. Grahne and A. Thomo, Approximate reasoning in semi-structured databases. In 8th International Workshop on Knowledge Representation meets Databases (KRDB2001), M. Lenzerini et al., Eds. volume 45 of CEUR Workshop Proceedings (2001).  
  8. U. Hafner, Low Bit-Rate Image and Video Coding with Weighted Finite Automata. PhD thesis, Universität Würzburg (1999).  
  9. K. Hashiguchi, Algorithms for determining relative star height and star height. Information and Computation78 (1988) 124–169.  
  10. K. Hashiguchi, Improved limitedness theorems on finite automata with distance functions. Theoretical Computer Science72 (1990) 27–38.  
  11. K. Hashiguchi, New upper bounds to the limitedness of distance automata. Theoretical Computer Science233 (2000) 19–32.  
  12. K. Hashiguchi, K. Ishiguro and S. Jimbo, Decidability of the equivalence problem for finitely ambiguous finance automata. International Journal of Algebra and Computation12 (2002) 445–461.  
  13. J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger and S. Seibert, Measures of nondeterminism in finite automata. In ICALP'00 Proceedings, volume 1853 of Lecture Notes in Computer Science, U. Montanari et al., Eds. pages 199–210. Springer-Verlag, Berlin (2000).  
  14. J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger and S. Seibert, Communication complexity method for measuring nondeterminism in finite automata. Information and Computation172 (2002) 202–217.  
  15. O. Ibarra and B. Ravikumar, On sparseness, ambiguity and other decision problems for acceptors and transducers. In STACS'86 Proceedings, volume 210 of Lecture Notes in Computer Science, B. Monien and G. Vidal-Naquet, Eds. pages 171–179. Springer-Verlag, Berlin (1986).  
  16. Z. Jiang, B. Litov and O. de Vel, Similarity enrichments in image compression through weighted finite automata. In COCOON'00 Proceedings, volume 1858 of Lecture Notes in Computer Science, pages 447–456. Springer-Verlag, Berlin (2000).  
  17. F. Katritzke, Refinements of Data Compression using Weighted Finite Automata. PhD thesis, Universität Siegen (2001).  
  18. D. Kirsten, Distance desert automata and the star height problem. RAIRO-Theor. Inf. Appl.39 (2005) 455–509.  
  19. D. Kirsten and I. Mäurer, On the determinization of weighted automata. Journal of Automata, Languages and Combinatorics10 (2005) 287–312.  
  20. I. Klimann, S. Lombardy, J. Mairesse and C. Prieur, Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science327 (2004) 349–373.  
  21. D. Krob, The equality problem for rational series with multiplicities in the tropical semiring is undecidable. International Journal of Algebra and Computation4 (1994) 405–425.  
  22. W. Kuich, Semirings and formal power series. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, pages 609–677. Springer-Verlag, Berlin (1997).  
  23. W. Kuich and A. Salomaa, editors. Semirings, Automata, Languages, volume 5 of Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (1986).  
  24. H. Leung, Limitedness theorem on finite automata with distance functions: An algebraic proof. Theoretical Computer Science81 (1991) 137–145.  
  25. H. Leung, Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM Journal of Computing27 (1998) 1073–1082.  
  26. H. Leung, The topological approach to the limitedness problem on distance automata. In J. Gunawardena, editor, Idempotency, pages 88–111. Cambridge University Press (1998).  
  27. H. Leung and V. Podolskiy, The limitedness problem on distance automata: Hashiguchi's method revisited. Theoretical Computer Science310 (2004) 147–158.  
  28. Y. Métivier and G. Richomme, New results on the star problem in trace monoids. Information and Computation119 (1995) 240–251.  
  29. M. Mohri, Finite-state transducers in language and speech processing. Computational Linguistics23 (1997) 269–311.  
  30. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs on Computer Science. Springer-Verlag, Berlin Heidelberg New York (1978).  
  31. I. Simon, Recognizable sets with multiplicities in the tropical semiring. In M. P. Chytil et al., editors, MFCS'88 Proceedings, volume 324 of Lecture Notes in Computer Science, pages 107–120. Springer-Verlag, Berlin (1988).  
  32. I. Simon, Factorization forests of finite height. Theoretical Computer Science72 (1990) 65–94.  
  33. I. Simon, A short proof of the factorization forest theorem. In M. Nivat and A. Podelski, Eds. Tree Automata and Languages, pages 433–438. Elsevier Science Publishers B.V. (1992).  
  34. I. Simon, On semigroups of matrices over the tropical semiring. RAIRO-Theor. Inf. Appl.28 (1994) 277–294.  
  35. A. Weber, Distance automata having large finite distance or finite ambiguity. Mathematical Systems Theory26 (1993) 169–185.  
  36. A. Weber, Finite valued distance automata. Theoretical Computer Science134 (1994) 225–251.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.