Density estimation with quadratic loss: a confidence intervals method
ESAIM: Probability and Statistics (2008)
- Volume: 12, page 438-463
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control19 (1974) 716–723.
- P. Alquier, Iterative Feature Selection In Least Square Regression Estimation. Ann. Inst. H. Poincaré B: Probab. Statist.44 (2008) 47–88.
- A. Barron, A. Cohen, W. Dahmen and R. DeVore, Adaptative Approximation and Learning by Greedy Algorithms, preprint (2006).
- G. Blanchard, P. Massart, R. Vert and L. Zwald, Kernel Projection Machine: A New Tool for Pattern Recognition. Proceedings of NIPS (2004).
- B.E. Boser, I.M. Guyon and V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler (ed.), ACM Press (1992) 144–152.
- T.T. Cai and L.D. Brown, Wavelet Estimation for Samples with Random Uniform Design. Stat. Probab. Lett.42 (1999) 313–321.
- O. Catoni, Statistical learning theory and stochastic optimization, Lecture Notes, Saint-Flour Summer School on Probability Theory (2001), Springer.
- O. Catoni, PAC-Bayesian Inductive and Transductive Learning, manuscript (2006).
- O. Catoni, A PAC-Bayesian approach to adaptative classification, preprint Laboratoire de Probabilités et Modèles Aléatoires (2003).
- A. Cohen, Wavelet methods in numerical analysis, in Handbook of numerical analysis, Vol. VII, North-Holland, Amsterdam (2000) 417–711.
- I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia (1992).
- D.L. Donoho and I.M. Johnstone, Ideal Spatial Adaptation by Wavelets. Biometrika81 (1994) 425–455.
- D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density Estimation by Wavelet Thresholding. Ann. Statist.24 (1996) 508–539.
- I.J. Good and R.A. Gaskins, Nonparametric roughness penalties for probability densities. Biometrika58 (1971) 255–277.
- W. Härdle, G. Kerkyacharian, D. Picard and A.B. Tsybakov, Wavelets, Approximations and Statistical Applications. Lecture Notes in Statistics, Springer (1998).
- J.S. Marron and S.P. Wand, Exact Mean Integrated Square Error. Ann. Statist.20 (1992) 712–736.
- D. Panchenko, Symmetrization Approach to Concentration Inequalities for Empirical Processes. Ann. Probab.31 (2003) 2068–2081.
- R Development Core Team, R: A Language And Environment For Statistical Computing, R Foundation For Statistical Computing, Vienna, Austria, 2004. URL . URIhttp://www.R-project.org
- G. Ratsch, C. Schafer, B. Scholkopf and S. Sonnenburg, Large Scale Multiple Kernel Learning. J. Machine Learning Research7 (2006) 1531–1565.
- J. Rissanen, Modeling by shortest data description. Automatica14 (1978) 465–471.
- M. Seeger, PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification. J. Machine Learning Res.3 (2002) 233–269.
- M. Tipping, The Relevance Vector Machine, in Advances in Neural Information Processing Systems, San Mateo, CA (2000). Morgan Kaufmann.
- A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Mathématiques et Applications, Springer (2004).
- V.N. Vapnik, The nature of statistical learning theory. Springer Verlag (1998).
- Zhao Zhang, Su Zhang, Chen-xi Zhang and Ya-zhu Chen, SVM for density estimation and application to medical image segmentation. J. Zhejiang Univ. Sci. B7 (2006).