Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems
Abdelmalek Aboussoror; Abdelatif Mansouri
RAIRO - Operations Research (2008)
- Volume: 42, Issue: 2, page 87-103
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topAboussoror, Abdelmalek, and Mansouri, Abdelatif. "Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems." RAIRO - Operations Research 42.2 (2008): 87-103. <http://eudml.org/doc/250401>.
@article{Aboussoror2008,
abstract = {
In this paper, which is an extension of [4],
we first show the existence of solutions to
a class of Min Sup problems with
linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel
problems. Furthermore, for such a class of bilevel problems, we
give a relationship with appropriate d.c. problems concerning the
existence of solutions.
},
author = {Aboussoror, Abdelmalek, Mansouri, Abdelatif},
journal = {RAIRO - Operations Research},
keywords = {Min Sup problems; variational
convergence; bilevel programming; d.c. programming.; min-sup problems; variational convergence; d.c. programming},
language = {eng},
month = {5},
number = {2},
pages = {87-103},
publisher = {EDP Sciences},
title = {Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems},
url = {http://eudml.org/doc/250401},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Aboussoror, Abdelmalek
AU - Mansouri, Abdelatif
TI - Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems
JO - RAIRO - Operations Research
DA - 2008/5//
PB - EDP Sciences
VL - 42
IS - 2
SP - 87
EP - 103
AB -
In this paper, which is an extension of [4],
we first show the existence of solutions to
a class of Min Sup problems with
linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel
problems. Furthermore, for such a class of bilevel problems, we
give a relationship with appropriate d.c. problems concerning the
existence of solutions.
LA - eng
KW - Min Sup problems; variational
convergence; bilevel programming; d.c. programming.; min-sup problems; variational convergence; d.c. programming
UR - http://eudml.org/doc/250401
ER -
References
top- A. Aboussoror and P. Loridan, Existence of Solutions to Two-Level Optimization Problems with Nonunique Lower-Level Solutions. J. Math. Anal. Appl.254 (2001) 348–357.
- A. Aboussoror, Weak Bilevel Programming Problems: Existence of Solutions. Adv. Math. Res.1 (2002) 83–92.
- A. Aboussoror and A. Mansouri, Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Mat. Anal. Appl.304 (2005) 399–408.
- A. Aboussoror and A. Mansouri, Sufficient conditions for Min Sup problems and application to bilevel programs, in Proc CIRO'05, IV Conférence Internationale en Recherche Opérationnelle, Théorie et Applications1 (2005) 99–107.
- J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Pure and Applied Mathematics (New York), John Wiley & Sons, New York (1984).
- H. Attouch, Variational Convergences for Functions and Operators. Pitman, Boston (1984).
- B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982).
- E. De Giorgi and T. Franzoni, Su un Tipo di Convergenza Variazionale. Atti Accad. Naz. Lincei Sci. Fi. Mat. Natur.58 (1975) 842–850.
- S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization52 (2003) 333–359.
- A.L. Dontchev and Zolezzi, Well-Posed Optimization Problems. Lect. Notes in Mathematics. Springer-Verlag, Berlin. 1543 (1993).
- J.E. Falk, A linear Max-Min problem. Math. Program.5 (1973) 169–188.
- M.B. Lignola and J. Morgan, Topological existence and stability for Min-Sup problems. J. Math. Anal. Appl.151 (1990) 164–180.
- M.B. Lignola and J. Morgan, Semicontinuities of marginal functions in a sequential setting. Optimization24 (1994) 241–252.
- P. Loridan and J. Morgan, Approximate Solutions for Two-Level Optimization Problems, in Trends in Mathematical Optimization, International Series of Numerical Mathematics, edited by K. Hoffman, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, Birkhäuser Verlag, Basel 84 (1988) 181–196.
- P. Loridan and J. Morgan, On Strict ε-Solutions for Two-Level Optimization Problem, in Operations Research Proceedings of the International Conference on Operations Research 90, Vienna, edited by W. Buhler, G. Feichtinger, F. Hartl, F.J. Radermacher and P. Stahly, Springer-Verlag, Berlin (1992) 165–172.
- R. Lucchetti, F. Mignanego and G. Pieri, Existence theorem of equilibrium points in Stackelberg games with constraints. Optimization18 (1987) 857–866.
- C. Michelot, Caractérisation des minima locaux des fonctions de la classe D.C., Technical Note, University of Dijon (1987).
- Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Mathematica Vietnamica22 (1997) 289–355.
- R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, NJ (1970).
- K. Shimizu and E. Aiyoshi, Necessary Conditions for Min-Max Problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control: AC-25(1) (1980) 62–66.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.