# On the convex hull of projective planes

Jean-François Maurras; Roumen Nedev

RAIRO - Operations Research (2008)

- Volume: 42, Issue: 3, page 285-289
- ISSN: 0399-0559

## Access Full Article

top## Abstract

top## How to cite

topMaurras, Jean-François, and Nedev, Roumen. "On the convex hull of projective planes." RAIRO - Operations Research 42.3 (2008): 285-289. <http://eudml.org/doc/250408>.

@article{Maurras2008,

abstract = {
We study the finite projective planes with linear programming
models. We give a complete description of the convex hull of the
finite projective planes of order 2. We give some integer linear
programming models whose solution are, either a finite
projective (or affine) plane of order n, or a (n+2)-arc.
},

author = {Maurras, Jean-François, Nedev, Roumen},

journal = {RAIRO - Operations Research},

keywords = {Convex hull; finite projective plane.; convex hull; finite projective plane},

language = {eng},

month = {8},

number = {3},

pages = {285-289},

publisher = {EDP Sciences},

title = {On the convex hull of projective planes},

url = {http://eudml.org/doc/250408},

volume = {42},

year = {2008},

}

TY - JOUR

AU - Maurras, Jean-François

AU - Nedev, Roumen

TI - On the convex hull of projective planes

JO - RAIRO - Operations Research

DA - 2008/8//

PB - EDP Sciences

VL - 42

IS - 3

SP - 285

EP - 289

AB -
We study the finite projective planes with linear programming
models. We give a complete description of the convex hull of the
finite projective planes of order 2. We give some integer linear
programming models whose solution are, either a finite
projective (or affine) plane of order n, or a (n+2)-arc.

LA - eng

KW - Convex hull; finite projective plane.; convex hull; finite projective plane

UR - http://eudml.org/doc/250408

ER -

## References

top- O. Anglada and J.F. Maurras, Enveloppe convexe des hyperplans d'un espace affine fini, avec Olivier Anglada. RAIRO-Oper. Res.37 (2003) 213–219. Zbl1096.52001
- D. Avis, avis/C/lrs.html. URIhttp://cgm.cs.mcgill.ca/
- D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrankements and polyhedra. Discrete Comput. Geom.8 (1992) 295–313. Zbl0752.68082
- I. Bárány and Pór, 0-1 polytopes with many facets, Adv. Math.161 (2001) 209–228. Zbl0988.52014
- R.H. Bruck and H.J. Ryser, The nonexistence of certain finite projective planes. Can. J. Math.1 (1949) 88–93. Zbl0037.37502
- F.C. Bussemaker and J.J. Seidel, Symmetric Hadamard matrices of order 36. Report 70-WSK-02, TH Eindhoven, July (1970). Zbl0324.05015
- T. Christof, www.zib.de/Optimization/Software/porta.
- K. Fukuda, http://cs.mcgill.ca/ fukuda/soft/cdd.
- P.B. Gibbons, Computing Techniques for the Construction and Analysis of Block Designs, Techn. Report N°92, Dept. of Computer Science, University of Toronto (1976).
- T.R. Kirkman, On a problem in combinations. Camb. Dublin Math. J.2 (1847) 191–204.
- C.W.H. Lam, The Search for a Finite Projective Plane of Order 10. Am. Math. Mon.98 (1991) 305–318. Zbl0744.51011
- M. Limbos, Projective embeddings of small Steiner triple systems. Ann. Discrete Math.7 (1980) 151–173. Zbl0444.05018
- R.A Mathon, K.T. Phelps and A. Rosa, Small Steiner triple systems and their properties. Ars Combinatoria15 (1983) 3–110. Zbl0516.05010
- J.F. Maurras, An exemple of dual polytopes in the unit hypercube. Ann. Discrete Math.1 (1977) 391–392. Zbl0361.52004
- J.F. Maurras, The Line Polytope of a finite Affine Plane. Discrete Math.115 (1993) 283–286. Zbl0774.51001
- T.S. Motzkin, H. Raiffa, G.L. Thompson and R.M. Thrall, The double description method, in H.W. Kuhn and A.W. Tucker, Eds., Contributions to theory of games, Vol. 2, Princeton University Press, Princeton (1953). Zbl0050.14201
- H.S. White, F.N. Cole and L.D. Cummings, Complete classification of the triad systems on fifteen elements. Mem. Nat. Acad. Sci. U.S.A.14, 2nd memoir (1919) 1–89.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.