Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions

Abdelkader Belarbi; Mouffak Benchohra; Abdelghani Ouahab

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 1, page 1-7
  • ISSN: 0044-8753

Abstract

top
In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem.

How to cite

top

Belarbi, Abdelkader, Benchohra, Mouffak, and Ouahab, Abdelghani. "Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions." Archivum Mathematicum 044.1 (2008): 1-7. <http://eudml.org/doc/250434>.

@article{Belarbi2008,
abstract = {In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem.},
author = {Belarbi, Abdelkader, Benchohra, Mouffak, Ouahab, Abdelghani},
journal = {Archivum Mathematicum},
keywords = {multiple solutions; Leggett-Williams fixed point theorem; nonlinear boundary value problem; integral boundary conditions; multiple solution; Leggett-Williams fixed point theorem; nonlinear boundary value problem; integral boundary condition},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions},
url = {http://eudml.org/doc/250434},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Belarbi, Abdelkader
AU - Benchohra, Mouffak
AU - Ouahab, Abdelghani
TI - Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 1
EP - 7
AB - In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem.
LA - eng
KW - multiple solutions; Leggett-Williams fixed point theorem; nonlinear boundary value problem; integral boundary conditions; multiple solution; Leggett-Williams fixed point theorem; nonlinear boundary value problem; integral boundary condition
UR - http://eudml.org/doc/250434
ER -

References

top
  1. Agarwal, R. P., O’Regan, D., 10.1216/rmjm/1008959665, Rocky Mountain J. Math. 31 (2001), 23–35. (2001) Zbl0979.45003MR1821365DOI10.1216/rmjm/1008959665
  2. Agarwal, R. P., O’Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) MR1680024
  3. Ahmad, B, Khan, R. A., Sivasundaram, S., Generalized quasilinearization method for a first order differential equation with integral boundary condition, Dynam. Contin. Discrete Impuls. Systems, Ser. A Math. Anal. 12 (2005), 289–296. (2005) Zbl1084.34007MR2170414
  4. Anderson, D., Avery, R., Peterson, A., 10.1016/S0377-0427(97)00201-X, J. Comput. Appl. Math. 88 (1998), 103–118. (1998) MR1609058DOI10.1016/S0377-0427(97)00201-X
  5. Brykalov, S. A., 10.1007/BF02254673, Georgian Math. J. 1 (1994), 243–249. (1994) Zbl0807.34021DOI10.1007/BF02254673
  6. Denche, M., Marhoune, A. L., High-order mixed-type differential equations with weighted integral boundary conditions, Electron. J. Differential Equations 60 (2000), 1–10. (2000) Zbl0967.35101MR1787207
  7. Gallardo, J. M., Second-order differential operators with integral boundary conditions and generation of analytic semigroups, Rocky Mountain J. Math. 30 (2000), 265–1291. (2000) Zbl0984.34014MR1810167
  8. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) Zbl0661.47045MR0959889
  9. Karakostas, G. L., Tsamatos, P. Ch., Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations 30 (2002), 17. (2002) Zbl0998.45004MR1907706
  10. Khan, R. A., The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ. 19 (2003), 15. (2003) Zbl1055.34033MR2039793
  11. Krall, A. M., 10.1090/S0002-9939-1965-0181794-9, Proc. Amer. Math. Soc. 16 (1965), 738–742. (1965) MR0181794DOI10.1090/S0002-9939-1965-0181794-9
  12. Leggett, R. W., Williams, L.R., 10.1512/iumj.1979.28.28046, Indiana Univ. Math. J. 28 (1979), 673–688. (1979) Zbl0421.47033MR0542951DOI10.1512/iumj.1979.28.28046
  13. Lomtatidze, A., Malaguti, L., On a nonlocal boundary value problem for second order nonlinear singular differential equations, Georgian Math. J. 7 (2000), 133–154. (2000) Zbl0967.34011MR1768050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.