Invariance of -natural metrics on linear frame bundles
Oldřich Kowalski; Masami Sekizawa
Archivum Mathematicum (2008)
- Volume: 044, Issue: 2, page 139-147
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKowalski, Oldřich, and Sekizawa, Masami. "Invariance of $g$-natural metrics on linear frame bundles." Archivum Mathematicum 044.2 (2008): 139-147. <http://eudml.org/doc/250437>.
@article{Kowalski2008,
abstract = {In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde\{G\}$ is locally homogeneous.},
author = {Kowalski, Oldřich, Sekizawa, Masami},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity; Riemannian manifold; linear frame bundle; orthonormal frame bundle; -natural metric; homogeneity},
language = {eng},
number = {2},
pages = {139-147},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariance of $g$-natural metrics on linear frame bundles},
url = {http://eudml.org/doc/250437},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Kowalski, Oldřich
AU - Sekizawa, Masami
TI - Invariance of $g$-natural metrics on linear frame bundles
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 139
EP - 147
AB - In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
LA - eng
KW - Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity; Riemannian manifold; linear frame bundle; orthonormal frame bundle; -natural metric; homogeneity
UR - http://eudml.org/doc/250437
ER -
References
top- Abbassi, M. T. K., Note on the classification theorems of -natural metrics on the tangent bundle of a Riemannian manifolds , Comment. Math. Univ. Carolin. 45 (2004), 591–596. (2004) MR2103077
- Cordero, L. A., de León, M., 10.1007/BF02844834, Rend. Circ. Mat. Palermo 32 (1983), 236–271. (1983) MR0729099DOI10.1007/BF02844834
- Cordero, L. A., de León, M., On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl. 65 (1986), 81–91. (1986) MR0844241
- Cordero, L. A., Dodson, C. T. J., de León, M., Differential Geometry of Frame Bundles, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. (1989) MR0980716
- Jensen, G., 10.1512/iumj.1971.20.20104, Indiana Univ. Math. J. 20 (1971), 1125–1143. (1971) Zbl0219.53044MR0289726DOI10.1512/iumj.1971.20.20104
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1993. (1993) MR1202431
- Kowalski, O., Sekizawa, M., Invariance of -natural metrics on tangent bundles, to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific. MR2462791
- Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles, to appear in Math. Nachr. Zbl1158.53015MR2473330
- Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles II, to appear in Ann. Global Anal. Geom. Zbl1141.53023MR2395192
- Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification, Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987. (1987) Zbl0632.53040MR0923348
- Kowalski, O., Sekizawa, M., On curvatures of linear frame bundles with naturally lifted metrics, Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295. (2005) Zbl1141.53020MR2202049
- Krupka, D., Elementary theory of differential invariants, Arch. Math. (Brno) 4 (1978), 207–214. (1978) Zbl0428.58002MR0512763
- Krupka, D., Differential invariants, Lecture Notes, Faculty of Science, Purkyně University, Brno (1979). (1979)
- Krupka, D., Janyška, J., Lectures on Differential Invariants, University J. E. Purkyně in Brno, 1990. (1990) MR1108622
- Krupka, D., V. Mikolášová,, On the uniqueness of some differential invariants: , [ , ], , Czechoslovak Math. J. 34 (1984), 588–597. (1984) MR0764440
- Mok, K. P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math. 302 (1978), 16–31. (1978) Zbl0378.53016MR0511689
- O’Neill, B., 10.1307/mmj/1028999604, Michigan Math. J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
- Zou, X., A new type of homogeneous spaces and the Einstein metrics on , Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78. (2006) Zbl1192.53055MR2245416
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.