Invariance of g -natural metrics on linear frame bundles

Oldřich Kowalski; Masami Sekizawa

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 2, page 139-147
  • ISSN: 0044-8753

Abstract

top
In this paper we prove that each g -natural metric on a linear frame bundle L M over a Riemannian manifold ( M , g ) is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define g -natural metrics on the orthonormal frame bundle O M and we prove the same invariance result as above for O M . Hence we see that, over a space ( M , g ) of constant sectional curvature, the bundle O M with an arbitrary g -natural metric G ˜ is locally homogeneous.

How to cite

top

Kowalski, Oldřich, and Sekizawa, Masami. "Invariance of $g$-natural metrics on linear frame bundles." Archivum Mathematicum 044.2 (2008): 139-147. <http://eudml.org/doc/250437>.

@article{Kowalski2008,
abstract = {In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde\{G\}$ is locally homogeneous.},
author = {Kowalski, Oldřich, Sekizawa, Masami},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity; Riemannian manifold; linear frame bundle; orthonormal frame bundle; -natural metric; homogeneity},
language = {eng},
number = {2},
pages = {139-147},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariance of $g$-natural metrics on linear frame bundles},
url = {http://eudml.org/doc/250437},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Kowalski, Oldřich
AU - Sekizawa, Masami
TI - Invariance of $g$-natural metrics on linear frame bundles
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 139
EP - 147
AB - In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
LA - eng
KW - Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity; Riemannian manifold; linear frame bundle; orthonormal frame bundle; -natural metric; homogeneity
UR - http://eudml.org/doc/250437
ER -

References

top
  1. Abbassi, M. T. K., Note on the classification theorems of g -natural metrics on the tangent bundle of a Riemannian manifolds ( M , g ) , Comment. Math. Univ. Carolin. 45 (2004), 591–596. (2004) MR2103077
  2. Cordero, L. A., de León, M., 10.1007/BF02844834, Rend. Circ. Mat. Palermo 32 (1983), 236–271. (1983) MR0729099DOI10.1007/BF02844834
  3. Cordero, L. A., de León, M., On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl. 65 (1986), 81–91. (1986) MR0844241
  4. Cordero, L. A., Dodson, C. T. J., de León, M., Differential Geometry of Frame Bundles, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. (1989) MR0980716
  5. Jensen, G., 10.1512/iumj.1971.20.20104, Indiana Univ. Math. J. 20 (1971), 1125–1143. (1971) Zbl0219.53044MR0289726DOI10.1512/iumj.1971.20.20104
  6. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1993. (1993) MR1202431
  7. Kowalski, O., Sekizawa, M., Invariance of g -natural metrics on tangent bundles, to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific. MR2462791
  8. Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles, to appear in Math. Nachr. Zbl1158.53015MR2473330
  9. Kowalski, O., Sekizawa, M., On the geometry of orthonormal frame bundles II, to appear in Ann. Global Anal. Geom. Zbl1141.53023MR2395192
  10. Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification, Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987. (1987) Zbl0632.53040MR0923348
  11. Kowalski, O., Sekizawa, M., On curvatures of linear frame bundles with naturally lifted metrics, Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295. (2005) Zbl1141.53020MR2202049
  12. Krupka, D., Elementary theory of differential invariants, Arch. Math. (Brno) 4 (1978), 207–214. (1978) Zbl0428.58002MR0512763
  13. Krupka, D., Differential invariants, Lecture Notes, Faculty of Science, Purkyně University, Brno (1979). (1979) 
  14. Krupka, D., Janyška, J., Lectures on Differential Invariants, University J. E. Purkyně in Brno, 1990. (1990) MR1108622
  15. Krupka, D., V. Mikolášová,, On the uniqueness of some differential invariants: d , [ , ], , Czechoslovak Math. J. 34 (1984), 588–597. (1984) MR0764440
  16. Mok, K. P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math. 302 (1978), 16–31. (1978) Zbl0378.53016MR0511689
  17. O’Neill, B., 10.1307/mmj/1028999604, Michigan Math. J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
  18. Zou, X., A new type of homogeneous spaces and the Einstein metrics on O ( n + 1 ) , Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78. (2006) Zbl1192.53055MR2245416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.