Asymptotic properties of trinomial delay differential equations
Jozef Džurina; Renáta Kotorová
Archivum Mathematicum (2008)
- Volume: 044, Issue: 2, page 149-158
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDžurina, Jozef, and Kotorová, Renáta. "Asymptotic properties of trinomial delay differential equations." Archivum Mathematicum 044.2 (2008): 149-158. <http://eudml.org/doc/250440>.
@article{Džurina2008,
abstract = {The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation
\[ \Big (\frac\{1\}\{r(t)\}\,y^\{\prime \}(t)\Big )^\{\prime \prime \}-p(t)\,y^\{\prime \}(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \]
Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.},
author = {Džurina, Jozef, Kotorová, Renáta},
journal = {Archivum Mathematicum},
keywords = {oscillation; property(A); delay argument; oscillation},
language = {eng},
number = {2},
pages = {149-158},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic properties of trinomial delay differential equations},
url = {http://eudml.org/doc/250440},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Džurina, Jozef
AU - Kotorová, Renáta
TI - Asymptotic properties of trinomial delay differential equations
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 149
EP - 158
AB - The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation
\[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \]
Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
LA - eng
KW - oscillation; property(A); delay argument; oscillation
UR - http://eudml.org/doc/250440
ER -
References
top- Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of third order nonlinear differential equations , Dyn. Syst. Appl. 9 (2000), 483–500. (2000) MR1843694
- Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Company, New York-London, 1953. (1953) Zbl0053.24705MR0061235
- Cecchi, M., Došlá, Z., Marini, M., 10.1006/jmaa.1998.6247, J. Math. Anal. Appl. 231 (1999), 509–525. (1999) MR1669163DOI10.1006/jmaa.1998.6247
- Cecchi, M., Marini, M., Villari, G., 10.1016/0022-0396(89)90165-4, J. Differential Equations 82 (1989), 15–27. (1989) Zbl0694.34035MR1023299DOI10.1016/0022-0396(89)90165-4
- Chanturia, T. A., Kiguradze, I. T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Nauka, Moscow, 1990, in Russian. (1990)
- Džurina, J., 10.1016/0362-546X(94)00239-E, Nonlinear Analysis 26 (1996), 33–39. (1996) MR1354789DOI10.1016/0362-546X(94)00239-E
- Džurina, J., Comparison theorems for functional differential equations, EDIS Žilina, 2002. (2002)
- Džurina, J., Comparison theorems for nonlinear ODE’s, Math. Slovaca 1992 (42), 299–315. (2042) MR1182960
- Erbe, L., Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation, Pacific J. Math. 1976 (64), 369–385. (1964) MR0435508
- Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York - London - Sydney, 1964. (1964) Zbl0125.32102MR0171038
- Jones, G. D., An asymptotic property of solutions , Pacific J. Math. 47 (1973), 135–138. (1973) MR0326065
- Kiguradze, I. T., On the oscillation of solutions of the equation , Mat. Sb. 65 (1964), 172–187, in Russian. (1964) Zbl0135.14302MR0173060
- Kusano, T., Naito, M., 10.2969/jmsj/03330509, J. Math. Soc. Japan 3 (1981), 509–532. (1981) Zbl0494.34049MR0620288DOI10.2969/jmsj/03330509
- Kusano, T., Naito, M., Tanaka, K., Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations, Proc. Roy. Soc. Edinburg 90 (1981), 25–40. (1981) MR0636062
- Lacková, D., The asymptotic properties of the solutions of -th order neutral differential equations, Arch. Math. (Brno) 39 (2003), 179–185. (2003)
- Lazer, A. C., 10.2140/pjm.1966.17.435, Pacific J. Math. 17 (1966), 435–466. (1966) Zbl0143.31501MR0193332DOI10.2140/pjm.1966.17.435
- Mahfoud, W. E., 10.2140/pjm.1979.83.187, Pacific J. Math. 83 (1979), 187–197. (1979) Zbl0441.34053MR0555047DOI10.2140/pjm.1979.83.187
- Parhi, N., Padhi, S., 10.1016/S0362-546X(97)00600-7, Nonlinear Anal. 34 (1998), 391–403. (1998) MR1635717DOI10.1016/S0362-546X(97)00600-7
- Skerlík, A., Integral criteria of oscillation for the third order linear differential equations, Math. Slovaca 45 (1995), 403–412. (1995) MR1387057
- Trench, W. F., 10.1090/S0002-9947-1974-0330632-X, Trans. Amer. Math. Soc. 189 (1974), 319–327. (1974) Zbl0289.34051MR0330632DOI10.1090/S0002-9947-1974-0330632-X
- Trench, W. F., 10.1090/S0002-9939-1983-0715867-7, Proc. Amer. Math. Soc. 83 (1983), 461–466. (1983) MR0715867DOI10.1090/S0002-9939-1983-0715867-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.