Asymptotic properties of trinomial delay differential equations

Jozef Džurina; Renáta Kotorová

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 2, page 149-158
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation 1 r ( t ) y ' ( t ) ' ' - p ( t ) y ' ( t ) + g ( t ) y ( τ ( t ) ) = 0 . * Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.

How to cite

top

Džurina, Jozef, and Kotorová, Renáta. "Asymptotic properties of trinomial delay differential equations." Archivum Mathematicum 044.2 (2008): 149-158. <http://eudml.org/doc/250440>.

@article{Džurina2008,
abstract = {The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation \[ \Big (\frac\{1\}\{r(t)\}\,y^\{\prime \}(t)\Big )^\{\prime \prime \}-p(t)\,y^\{\prime \}(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \] Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.},
author = {Džurina, Jozef, Kotorová, Renáta},
journal = {Archivum Mathematicum},
keywords = {oscillation; property(A); delay argument; oscillation},
language = {eng},
number = {2},
pages = {149-158},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Asymptotic properties of trinomial delay differential equations},
url = {http://eudml.org/doc/250440},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Džurina, Jozef
AU - Kotorová, Renáta
TI - Asymptotic properties of trinomial delay differential equations
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 2
SP - 149
EP - 158
AB - The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation \[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \] Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
LA - eng
KW - oscillation; property(A); delay argument; oscillation
UR - http://eudml.org/doc/250440
ER -

References

top
  1. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., On nonoscillatory solutions of third order nonlinear differential equations , Dyn. Syst. Appl. 9 (2000), 483–500. (2000) MR1843694
  2. Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Company, New York-London, 1953. (1953) Zbl0053.24705MR0061235
  3. Cecchi, M., Došlá, Z., Marini, M., 10.1006/jmaa.1998.6247, J. Math. Anal. Appl. 231 (1999), 509–525. (1999) MR1669163DOI10.1006/jmaa.1998.6247
  4. Cecchi, M., Marini, M., Villari, G., 10.1016/0022-0396(89)90165-4, J. Differential Equations 82 (1989), 15–27. (1989) Zbl0694.34035MR1023299DOI10.1016/0022-0396(89)90165-4
  5. Chanturia, T. A., Kiguradze, I. T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Nauka, Moscow, 1990, in Russian. (1990) 
  6. Džurina, J., 10.1016/0362-546X(94)00239-E, Nonlinear Analysis 26 (1996), 33–39. (1996) MR1354789DOI10.1016/0362-546X(94)00239-E
  7. Džurina, J., Comparison theorems for functional differential equations, EDIS Žilina, 2002. (2002) 
  8. Džurina, J., Comparison theorems for nonlinear ODE’s, Math. Slovaca 1992 (42), 299–315. (2042) MR1182960
  9. Erbe, L., Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation, Pacific J. Math. 1976 (64), 369–385. (1964) MR0435508
  10. Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York - London - Sydney, 1964. (1964) Zbl0125.32102MR0171038
  11. Jones, G. D., An asymptotic property of solutions y ' ' ' + p ( x ) y ' + q ( x ) y = 0 , Pacific J. Math. 47 (1973), 135–138. (1973) MR0326065
  12. Kiguradze, I. T., On the oscillation of solutions of the equation d m u d t m + a ( t ) | u | n s i g n u = 0 , Mat. Sb. 65 (1964), 172–187, in Russian. (1964) Zbl0135.14302MR0173060
  13. Kusano, T., Naito, M., 10.2969/jmsj/03330509, J. Math. Soc. Japan 3 (1981), 509–532. (1981) Zbl0494.34049MR0620288DOI10.2969/jmsj/03330509
  14. Kusano, T., Naito, M., Tanaka, K., Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations, Proc. Roy. Soc. Edinburg 90 (1981), 25–40. (1981) MR0636062
  15. Lacková, D., The asymptotic properties of the solutions of n -th order neutral differential equations, Arch. Math. (Brno) 39 (2003), 179–185. (2003) 
  16. Lazer, A. C., 10.2140/pjm.1966.17.435, Pacific J. Math. 17 (1966), 435–466. (1966) Zbl0143.31501MR0193332DOI10.2140/pjm.1966.17.435
  17. Mahfoud, W. E., 10.2140/pjm.1979.83.187, Pacific J. Math. 83 (1979), 187–197. (1979) Zbl0441.34053MR0555047DOI10.2140/pjm.1979.83.187
  18. Parhi, N., Padhi, S., 10.1016/S0362-546X(97)00600-7, Nonlinear Anal. 34 (1998), 391–403. (1998) MR1635717DOI10.1016/S0362-546X(97)00600-7
  19. Skerlík, A., Integral criteria of oscillation for the third order linear differential equations, Math. Slovaca 45 (1995), 403–412. (1995) MR1387057
  20. Trench, W. F., 10.1090/S0002-9947-1974-0330632-X, Trans. Amer. Math. Soc. 189 (1974), 319–327. (1974) Zbl0289.34051MR0330632DOI10.1090/S0002-9947-1974-0330632-X
  21. Trench, W. F., 10.1090/S0002-9939-1983-0715867-7, Proc. Amer. Math. Soc. 83 (1983), 461–466. (1983) MR0715867DOI10.1090/S0002-9939-1983-0715867-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.