Product of vector measures on topological spaces
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 421-435
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKhurana, Surjit Singh. "Product of vector measures on topological spaces." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 421-435. <http://eudml.org/doc/250444>.
@article{Khurana2008,
abstract = {For $i=(1,2)$, let $X_\{i\}$ be completely regular Hausdorff spaces, $E_\{i\}$ quasi-complete locally convex spaces, $E=E_\{1\}\breve\{\otimes \}E_\{2\}$, the completion of the their injective tensor product, $C_\{b\}(X_\{i\})$ the spaces of all bounded, scalar-valued continuous functions on $X_\{i\}$, and $\mu _\{i\}$$E_\{i\}$-valued Baire measures on $X_\{i\}$. Under certain conditions we determine the existence of the $E$-valued product measure $\mu _\{1\}\otimes \mu _\{2\}$ and prove some properties of these measures.},
author = {Khurana, Surjit Singh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {injective tensor product; product of measures; tight measures; $\tau $-smooth measures; separable measures; Fubini theorem; injective tensor product; product of measures; tight measures; -smooth measures; separable measures; Fubini theorem},
language = {eng},
number = {3},
pages = {421-435},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Product of vector measures on topological spaces},
url = {http://eudml.org/doc/250444},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Khurana, Surjit Singh
TI - Product of vector measures on topological spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 421
EP - 435
AB - For $i=(1,2)$, let $X_{i}$ be completely regular Hausdorff spaces, $E_{i}$ quasi-complete locally convex spaces, $E=E_{1}\breve{\otimes }E_{2}$, the completion of the their injective tensor product, $C_{b}(X_{i})$ the spaces of all bounded, scalar-valued continuous functions on $X_{i}$, and $\mu _{i}$$E_{i}$-valued Baire measures on $X_{i}$. Under certain conditions we determine the existence of the $E$-valued product measure $\mu _{1}\otimes \mu _{2}$ and prove some properties of these measures.
LA - eng
KW - injective tensor product; product of measures; tight measures; $\tau $-smooth measures; separable measures; Fubini theorem; injective tensor product; product of measures; tight measures; -smooth measures; separable measures; Fubini theorem
UR - http://eudml.org/doc/250444
ER -
References
top- Babiker A.G., Knowles J.D., 10.1112/S0025579300010871, Mathematika 32 (1985), 60-67. (1985) Zbl0578.28004MR0817109DOI10.1112/S0025579300010871
- Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, R.I., 1977. Zbl0521.46035MR0453964
- Duchoň M., Kluvánek I., Inductive tensor product of vector-valued measures, Mat. Časopis Sloven. Akad. Vied 17 (1967), 108-112 20 (1972), 269-286. (1972) MR0229786
- Fremlin D., Garling D., Haydon R., 10.1112/plms/s3-25.1.115, Proc. Lon. Math. Soc. 25 (1972), 115-136. (1972) Zbl0236.46025MR0344405DOI10.1112/plms/s3-25.1.115
- Freniche F.J., García-Vázquez J.C., 10.1006/jmaa.1999.6575, J. Math. Anal. Appl. 240 (1999), 324-339. (1999) MR1731648DOI10.1006/jmaa.1999.6575
- Grothendieck A., 10.4153/CJM-1953-017-4, Canadian J. Math. 5 (1953), 129-173. (1953) MR0058866DOI10.4153/CJM-1953-017-4
- Jarchow H., Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981. Zbl0466.46001MR0632257
- Khurana S.S., 10.1090/S0002-9947-1978-0492297-X, Trans Amer. Math. Soc. 241 (1978), 195-211. (1978) MR0492297DOI10.1090/S0002-9947-1978-0492297-X
- Khurana S.S., 10.1007/BF01420966, Math. Ann. 234 (1978), 159-166. (1978) MR0494178DOI10.1007/BF01420966
- Khurana S.S., A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167-179. (1981) MR0828869
- Khurana S.S., Vector measures on topological spaces, Georgian Math. J., to appear. Zbl1164.60002MR2389030
- Kluvánek I, Knowles G., Vector Measures and Control Systems, North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., New York, 1976. MR0499068
- Lewis D.R., 10.2140/pjm.1970.33.157, Pacific J. Math. 33 (1970), 157-165. (1970) Zbl0195.14303MR0259064DOI10.2140/pjm.1970.33.157
- Phelps R.R., Lectures on Choquet Theorem, Van Nostrand, Princeton, 1966. MR0193470
- Schaefer H.H., Topological Vector Spaces, Springer, New York-Berlin, 1971. Zbl0983.46002MR0342978
- Sentilles F.D., 10.1090/S0002-9947-1972-0295065-1, Trans. Amer. Math. Soc. 168 (1972), 311-336. (1972) MR0295065DOI10.1090/S0002-9947-1972-0295065-1
- Wheeler R.F., Survey of Baire measures and strict topologies, Exposition. Math. 1 (1983), 2 97-190. (1983) Zbl0522.28009MR0710569
- Varadarajan V.S., Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-220. (1965)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.