Moufang loops of odd order p 1 p 2 p n q 3 with non-trivial nucleus

Andrew Rajah; Kam-Yoon Chong

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 2, page 301-307
  • ISSN: 0010-2628

Abstract

top
It has been proven by F. Leong and the first author (J. Algebra 190 (1997), 474–486) that all Moufang loops of order p α q 1 β 1 q 2 β 2 · · · q n β n where p and q i are odd primes, are associative if p < q 1 < q 2 < · · · < q n , and

α 3 \alpha \le 3 , β i 2 \beta _i\le 2 ; or

p 5 p\ge 5 , α 4 \alpha \le 4 , β i 2 \beta _i\le 2 .

The first author also proved that if p and q are distinct odd primes, then all Moufang loops of order p q 3 are associative if and only if q ¬ 1 ( mod p ) (J. Algebra 235 (2001), 66–93). In this paper, we prove that all Moufang loops of order p 1 p 2 · · · p n q 3 where p i and q are odd primes, are associative if p 1 < p 2 < · · · < p n < q , q ¬ 1 ( mod p i ) , p i ¬ 1 ( mod p j ) and the nucleus is not trivial.

How to cite

top

Rajah, Andrew, and Chong, Kam-Yoon. "Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 301-307. <http://eudml.org/doc/250445>.

@article{Rajah2008,
abstract = {It has been proven by F. Leong and the first author (J. Algebra 190 (1997), 474–486) that all Moufang loops of order $p^\alpha q_1^\{\beta _1\}q_2^\{\beta _2\}\cdot \cdot \cdot q_n^\{\beta _n\}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot <q_n$, and The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\lnot \equiv 1(\text\{\rm mod\}\, p)$ (J. Algebra 235 (2001), 66–93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\lnot \equiv 1(\text\{\rm mod\}\, p_i)$, $p_i\lnot \equiv 1(\text\{\rm mod\}\, p_j)$ and the nucleus is not trivial.},
author = {Rajah, Andrew, Chong, Kam-Yoon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loop; order; nonassociative; nonassociative Moufang loops; orders of finite loops},
language = {eng},
number = {2},
pages = {301-307},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus},
url = {http://eudml.org/doc/250445},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Rajah, Andrew
AU - Chong, Kam-Yoon
TI - Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 301
EP - 307
AB - It has been proven by F. Leong and the first author (J. Algebra 190 (1997), 474–486) that all Moufang loops of order $p^\alpha q_1^{\beta _1}q_2^{\beta _2}\cdot \cdot \cdot q_n^{\beta _n}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot <q_n$, and The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\lnot \equiv 1(\text{\rm mod}\, p)$ (J. Algebra 235 (2001), 66–93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\lnot \equiv 1(\text{\rm mod}\, p_i)$, $p_i\lnot \equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
LA - eng
KW - Moufang loop; order; nonassociative; nonassociative Moufang loops; orders of finite loops
UR - http://eudml.org/doc/250445
ER -

References

top
  1. Bruck R.H., A Survey of Binary Systems, Springer, New York, 1971. Zbl0141.01401MR0093552
  2. Chein O., 10.1090/S0002-9947-1974-0330336-3, Trans. Amer. Math. Soc. 188 2 (1974), 31-51. (1974) Zbl0286.20088MR0330336DOI10.1090/S0002-9947-1974-0330336-3
  3. Chein O., Moufang loops of small order, Memoirs Amer. Math. Soc. 13 197 (1978), 1-131. (1978) Zbl0378.20053MR0466391
  4. Chein O., Rajah A., Possible orders of nonassociative Moufang loops, Comment. Math. Univ. Carolin. 41 2 (2000), 237-244. (2000) Zbl1038.20045MR1780867
  5. Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393-414. (1968) Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
  6. Grishkov A.N., Zavarnitsine A.V., 10.1017/S0305004105008388, Math. Proc. Cambridge Philos. Soc. 139 (2005), 41-57. (2005) Zbl1091.20039MR2155504DOI10.1017/S0305004105008388
  7. Herstein I.N., Topics in Algebra, John Wiley & Sons, Inc., New York, 1975. Zbl0122.01301MR0171801
  8. Leong F., Rajah A., 10.1006/jabr.1995.1243, J. Algebra 176 (1995), 265-270. (1995) MR1345304DOI10.1006/jabr.1995.1243
  9. Leong F., Rajah A., 10.1006/jabr.1996.0150, J. Algebra 181 (1996), 876-883. (1996) MR1386583DOI10.1006/jabr.1996.0150
  10. Leong F., Rajah A., 10.1006/jabr.1996.0274, J. Algebra 184 (1996), 561-569. (1996) Zbl0860.20054MR1409228DOI10.1006/jabr.1996.0274
  11. Leong F., Rajah A., Moufang loops of odd order p α q 1 2 q n 2 r 1 r m , J. Algebra 190 (1997), 474-486. (1997) Zbl0874.20046MR1441958
  12. Leong F., Rajah A., Split extension in Moufang loops, Publ. Math. Debrecen 52 1-2 (1998), 33-42. (1998) MR1603303
  13. Purtill M., 10.1016/0021-8693(88)90136-6, J. Algebra 112 (1988), 122-128. (1988) Zbl0644.20040MR0921968DOI10.1016/0021-8693(88)90136-6
  14. Purtill M., 10.1016/0021-8693(92)90192-O, J. Algebra 145 (1992), 262. (1992) Zbl0742.20068MR1144674DOI10.1016/0021-8693(92)90192-O
  15. Rajah A., 10.1006/jabr.2000.8422, J. Algebra 235 (2001), 66-93. (2001) Zbl0973.20062MR1807655DOI10.1006/jabr.2000.8422

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.