Moufang loops of odd order with non-trivial nucleus
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 301-307
- ISSN: 0010-2628
Access Full Article
topAbstract
top-
\alpha \le 3 \beta _i\le 2 -
p\ge 5 \alpha \le 4 \beta _i\le 2
How to cite
topRajah, Andrew, and Chong, Kam-Yoon. "Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 301-307. <http://eudml.org/doc/250445>.
@article{Rajah2008,
abstract = {It has been proven by F. Leong and the first author (J. Algebra 190 (1997), 474–486) that all Moufang loops of order $p^\alpha q_1^\{\beta _1\}q_2^\{\beta _2\}\cdot \cdot \cdot q_n^\{\beta _n\}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot <q_n$, and
The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\lnot \equiv 1(\text\{\rm mod\}\, p)$ (J. Algebra 235 (2001), 66–93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\lnot \equiv 1(\text\{\rm mod\}\, p_i)$, $p_i\lnot \equiv 1(\text\{\rm mod\}\, p_j)$ and the nucleus is not trivial.},
author = {Rajah, Andrew, Chong, Kam-Yoon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loop; order; nonassociative; nonassociative Moufang loops; orders of finite loops},
language = {eng},
number = {2},
pages = {301-307},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus},
url = {http://eudml.org/doc/250445},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Rajah, Andrew
AU - Chong, Kam-Yoon
TI - Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 301
EP - 307
AB - It has been proven by F. Leong and the first author (J. Algebra 190 (1997), 474–486) that all Moufang loops of order $p^\alpha q_1^{\beta _1}q_2^{\beta _2}\cdot \cdot \cdot q_n^{\beta _n}$ where $p$ and $q_i$ are odd primes, are associative if $p<q_1<q_2<\cdot \cdot \cdot <q_n$, and
The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\lnot \equiv 1(\text{\rm mod}\, p)$ (J. Algebra 235 (2001), 66–93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1<p_2<\cdot \cdot \cdot <p_n<q$, $q\lnot \equiv 1(\text{\rm mod}\, p_i)$, $p_i\lnot \equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
LA - eng
KW - Moufang loop; order; nonassociative; nonassociative Moufang loops; orders of finite loops
UR - http://eudml.org/doc/250445
ER -
References
top- Bruck R.H., A Survey of Binary Systems, Springer, New York, 1971. Zbl0141.01401MR0093552
- Chein O., 10.1090/S0002-9947-1974-0330336-3, Trans. Amer. Math. Soc. 188 2 (1974), 31-51. (1974) Zbl0286.20088MR0330336DOI10.1090/S0002-9947-1974-0330336-3
- Chein O., Moufang loops of small order, Memoirs Amer. Math. Soc. 13 197 (1978), 1-131. (1978) Zbl0378.20053MR0466391
- Chein O., Rajah A., Possible orders of nonassociative Moufang loops, Comment. Math. Univ. Carolin. 41 2 (2000), 237-244. (2000) Zbl1038.20045MR1780867
- Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393-414. (1968) Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
- Grishkov A.N., Zavarnitsine A.V., 10.1017/S0305004105008388, Math. Proc. Cambridge Philos. Soc. 139 (2005), 41-57. (2005) Zbl1091.20039MR2155504DOI10.1017/S0305004105008388
- Herstein I.N., Topics in Algebra, John Wiley & Sons, Inc., New York, 1975. Zbl0122.01301MR0171801
- Leong F., Rajah A., 10.1006/jabr.1995.1243, J. Algebra 176 (1995), 265-270. (1995) MR1345304DOI10.1006/jabr.1995.1243
- Leong F., Rajah A., 10.1006/jabr.1996.0150, J. Algebra 181 (1996), 876-883. (1996) MR1386583DOI10.1006/jabr.1996.0150
- Leong F., Rajah A., 10.1006/jabr.1996.0274, J. Algebra 184 (1996), 561-569. (1996) Zbl0860.20054MR1409228DOI10.1006/jabr.1996.0274
- Leong F., Rajah A., Moufang loops of odd order , J. Algebra 190 (1997), 474-486. (1997) Zbl0874.20046MR1441958
- Leong F., Rajah A., Split extension in Moufang loops, Publ. Math. Debrecen 52 1-2 (1998), 33-42. (1998) MR1603303
- Purtill M., 10.1016/0021-8693(88)90136-6, J. Algebra 112 (1988), 122-128. (1988) Zbl0644.20040MR0921968DOI10.1016/0021-8693(88)90136-6
- Purtill M., 10.1016/0021-8693(92)90192-O, J. Algebra 145 (1992), 262. (1992) Zbl0742.20068MR1144674DOI10.1016/0021-8693(92)90192-O
- Rajah A., 10.1006/jabr.2000.8422, J. Algebra 235 (2001), 66-93. (2001) Zbl0973.20062MR1807655DOI10.1006/jabr.2000.8422
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.