On central nilpotency in finite loops with nilpotent inner mapping groups
Markku Niemenmaa; Miikka Rytty
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 271-277
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNiemenmaa, Markku, and Rytty, Miikka. "On central nilpotency in finite loops with nilpotent inner mapping groups." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 271-277. <http://eudml.org/doc/250450>.
@article{Niemenmaa2008,
abstract = {In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.},
author = {Niemenmaa, Markku, Rytty, Miikka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; group; connected transversals; finite loops; nilpotent inner mapping groups; connected transversals},
language = {eng},
number = {2},
pages = {271-277},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On central nilpotency in finite loops with nilpotent inner mapping groups},
url = {http://eudml.org/doc/250450},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Niemenmaa, Markku
AU - Rytty, Miikka
TI - On central nilpotency in finite loops with nilpotent inner mapping groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 271
EP - 277
AB - In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.
LA - eng
KW - loop; group; connected transversals; finite loops; nilpotent inner mapping groups; connected transversals
UR - http://eudml.org/doc/250450
ER -
References
top- Amberg B., Franciosi S., de Giovanni F., Products of Groups, Clarendon Press, New York, 1992. Zbl0774.20001MR1211633
- Bruck R., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. (1946) Zbl0061.02201MR0017288
- Huppert B., Endliche Gruppen I, Springer, Berlin-New York, 1967. Zbl0412.20002MR0224703
- Kepka T., 10.1080/00927879808826169, Comm. Algebra 26 (1998), 857-861. (1998) MR1606178DOI10.1080/00927879808826169
- Kepka T., Niemenmaa M., 10.1007/BF01198806, Arch. Math. 60 (1993), 233-236. (1993) MR1201636DOI10.1007/BF01198806
- Niemenmaa M., 10.1017/S0004972700014520, Bull. Austral. Math. Soc. 52 (1995), 153-160. (1995) Zbl0838.20080MR1344268DOI10.1017/S0004972700014520
- Niemenmaa M., On finite loops and their inner mapping groups, Comment. Math. Univ. Carolin. 45 (2004), 341-347. (2004) Zbl1101.20045MR2075281
- Niemenmaa M., Kepka T., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112-122. (1990) Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
- Niemenmaa M., Kepka T., 10.1112/blms/24.4.343, Bull. London Math. Soc. 24 (1992), 343-346. (1992) Zbl0793.20064MR1165376DOI10.1112/blms/24.4.343
- Niemenmaa M., Kepka T., 10.1017/S0004972700016166, Bull. Austral. Math. Soc. 49 (1994), 121-128. (1994) Zbl0799.20020MR1262682DOI10.1017/S0004972700016166
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.