A class of commutative loops with metacyclic inner mapping groups

Aleš Drápal

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 3, page 357-382
  • ISSN: 0010-2628

Abstract

top
We investigate loops defined upon the product m × k by the formula ( a , i ) ( b , j ) = ( ( a + b ) / ( 1 + t f i ( 0 ) f j ( 0 ) ) , i + j ) , where f ( x ) = ( s x + 1 ) / ( t x + 1 ) , for appropriate parameters s , t m * . Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If s = 1 , then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.

How to cite

top

Drápal, Aleš. "A class of commutative loops with metacyclic inner mapping groups." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 357-382. <http://eudml.org/doc/250451>.

@article{Drápal2008,
abstract = {We investigate loops defined upon the product $\mathbb \{Z\}_m\times \mathbb \{Z\}_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \mathbb \{Z\}_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.},
author = {Drápal, Aleš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {A-loop; nucleus; inner mapping group; cocycle; linear fractional; commutative loops; inner mapping groups; cocycles; linear fractional mappings; isotopisms; isomorphisms},
language = {eng},
number = {3},
pages = {357-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A class of commutative loops with metacyclic inner mapping groups},
url = {http://eudml.org/doc/250451},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Drápal, Aleš
TI - A class of commutative loops with metacyclic inner mapping groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 357
EP - 382
AB - We investigate loops defined upon the product $\mathbb {Z}_m\times \mathbb {Z}_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \mathbb {Z}_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
LA - eng
KW - A-loop; nucleus; inner mapping group; cocycle; linear fractional; commutative loops; inner mapping groups; cocycles; linear fractional mappings; isotopisms; isomorphisms
UR - http://eudml.org/doc/250451
ER -

References

top
  1. Belousov V.D., Proizvodnyje operacii i asociatory v lupach, Mat. Sb. 45 (1958), 51-70. (1958) MR0093556
  2. Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967. MR0218483
  3. Bruck R.H., Paige L.J., 10.2307/1969612, Ann. of Math. 63 (1956), 308-323. (1956) Zbl0074.01701MR0076779DOI10.2307/1969612
  4. Csörgö P., Niemenmaa M., 10.1006/jabr.2000.8408, J. Algebra 232 (2000), 336-342. (2000) MR1783930DOI10.1006/jabr.2000.8408
  5. Csörgö P., Niemenmaa M., 10.1006/eujc.2001.0544, European J. Combin. 23 (2002), 179-185. (2002) Zbl0997.20031MR1881549DOI10.1006/eujc.2001.0544
  6. Drápal A., 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191-206. (2002) Zbl1005.20051MR1883500DOI10.1007/s605-002-8256-2
  7. Drápal A., 10.1090/S0002-9947-07-04131-1, Trans. Amer. Math. Soc. 360 (2008), 671-689. (2008) Zbl1144.20043MR2346467DOI10.1090/S0002-9947-07-04131-1
  8. Drápal A., Jedlička P., On loop identities that can be obtained by a nuclear identification, submitted. 
  9. Drápal A., 10.1007/BF03173499, Abh. Math. Sem. Univ. Hamburg 77 (2007), 201-218. (2007) Zbl1145.20037MR2379339DOI10.1007/BF03173499
  10. Kinyon M.K., Kunen K., Phillips J.D., 10.1090/S0002-9939-01-06090-7, Proc. Amer. Math. Soc. 130 (2002), 619-624. (2002) Zbl0990.20044MR1866009DOI10.1090/S0002-9939-01-06090-7
  11. Myllylä K., Niemenmaa M., On the solvability of commutative loops and their multiplication groups, Comment. Math. Univ. Carolin. 40 (1999), 209-213. (1999) MR1732641
  12. Niemenmaa M., On finite loops whose inner mapping groups have small orders, Comment. Math. Univ. Carolin. 37 (1996), 651-654. (1996) Zbl0881.20006MR1426930
  13. Niemenmaa M., 10.1006/eujc.1997.0163, European J. Combin. 18 (1997), 915-919. (1997) Zbl0889.20044MR1485376DOI10.1006/eujc.1997.0163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.