A class of commutative loops with metacyclic inner mapping groups
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 3, page 357-382
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDrápal, Aleš. "A class of commutative loops with metacyclic inner mapping groups." Commentationes Mathematicae Universitatis Carolinae 49.3 (2008): 357-382. <http://eudml.org/doc/250451>.
@article{Drápal2008,
abstract = {We investigate loops defined upon the product $\mathbb \{Z\}_m\times \mathbb \{Z\}_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \mathbb \{Z\}_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.},
author = {Drápal, Aleš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {A-loop; nucleus; inner mapping group; cocycle; linear fractional; commutative loops; inner mapping groups; cocycles; linear fractional mappings; isotopisms; isomorphisms},
language = {eng},
number = {3},
pages = {357-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A class of commutative loops with metacyclic inner mapping groups},
url = {http://eudml.org/doc/250451},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Drápal, Aleš
TI - A class of commutative loops with metacyclic inner mapping groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 3
SP - 357
EP - 382
AB - We investigate loops defined upon the product $\mathbb {Z}_m\times \mathbb {Z}_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \mathbb {Z}_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
LA - eng
KW - A-loop; nucleus; inner mapping group; cocycle; linear fractional; commutative loops; inner mapping groups; cocycles; linear fractional mappings; isotopisms; isomorphisms
UR - http://eudml.org/doc/250451
ER -
References
top- Belousov V.D., Proizvodnyje operacii i asociatory v lupach, Mat. Sb. 45 (1958), 51-70. (1958) MR0093556
- Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967. MR0218483
- Bruck R.H., Paige L.J., 10.2307/1969612, Ann. of Math. 63 (1956), 308-323. (1956) Zbl0074.01701MR0076779DOI10.2307/1969612
- Csörgö P., Niemenmaa M., 10.1006/jabr.2000.8408, J. Algebra 232 (2000), 336-342. (2000) MR1783930DOI10.1006/jabr.2000.8408
- Csörgö P., Niemenmaa M., 10.1006/eujc.2001.0544, European J. Combin. 23 (2002), 179-185. (2002) Zbl0997.20031MR1881549DOI10.1006/eujc.2001.0544
- Drápal A., 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191-206. (2002) Zbl1005.20051MR1883500DOI10.1007/s605-002-8256-2
- Drápal A., 10.1090/S0002-9947-07-04131-1, Trans. Amer. Math. Soc. 360 (2008), 671-689. (2008) Zbl1144.20043MR2346467DOI10.1090/S0002-9947-07-04131-1
- Drápal A., Jedlička P., On loop identities that can be obtained by a nuclear identification, submitted.
- Drápal A., 10.1007/BF03173499, Abh. Math. Sem. Univ. Hamburg 77 (2007), 201-218. (2007) Zbl1145.20037MR2379339DOI10.1007/BF03173499
- Kinyon M.K., Kunen K., Phillips J.D., 10.1090/S0002-9939-01-06090-7, Proc. Amer. Math. Soc. 130 (2002), 619-624. (2002) Zbl0990.20044MR1866009DOI10.1090/S0002-9939-01-06090-7
- Myllylä K., Niemenmaa M., On the solvability of commutative loops and their multiplication groups, Comment. Math. Univ. Carolin. 40 (1999), 209-213. (1999) MR1732641
- Niemenmaa M., On finite loops whose inner mapping groups have small orders, Comment. Math. Univ. Carolin. 37 (1996), 651-654. (1996) Zbl0881.20006MR1426930
- Niemenmaa M., 10.1006/eujc.1997.0163, European J. Combin. 18 (1997), 915-919. (1997) Zbl0889.20044MR1485376DOI10.1006/eujc.1997.0163
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.