On groups of similitudes in associative rings

Evgenii L. Bashkirov

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 4, page 525-531
  • ISSN: 0010-2628

Abstract

top
Let R be an associative ring with 1 and R × the multiplicative group of invertible elements of R . In the paper, subgroups of R × which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.

How to cite

top

Bashkirov, Evgenii L.. "On groups of similitudes in associative rings." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 525-531. <http://eudml.org/doc/250452>.

@article{Bashkirov2008,
abstract = {Let $R$ be an associative ring with 1 and $R^\{\times \}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^\{\times \}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.},
author = {Bashkirov, Evgenii L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {associative rings; unipotent elements; associative rings; unipotent elements; groups of invertible elements; similitudes; isometry groups},
language = {eng},
number = {4},
pages = {525-531},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On groups of similitudes in associative rings},
url = {http://eudml.org/doc/250452},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Bashkirov, Evgenii L.
TI - On groups of similitudes in associative rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 525
EP - 531
AB - Let $R$ be an associative ring with 1 and $R^{\times }$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times }$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.
LA - eng
KW - associative rings; unipotent elements; associative rings; unipotent elements; groups of invertible elements; similitudes; isometry groups
UR - http://eudml.org/doc/250452
ER -

References

top
  1. Bashkirov E.L., 10.1007/BF02106733, Siberian Math. J. 37 (1996), 5 754-759. (1996) MR1440380DOI10.1007/BF02106733
  2. Bashkirov E.L., 10.1016/j.jalgebra.2004.09.006, J. Algebra 287 (2005), 2 319-350. (2005) Zbl1088.20030MR2134148DOI10.1016/j.jalgebra.2004.09.006
  3. Bashkirov E.L., 10.1080/00927870500454802, Comm. Algebra 34 (2006), 6 1931-1948. (2006) Zbl1110.20038MR2235072DOI10.1080/00927870500454802
  4. Bashkirov E.L., 10.1080/00927870601074798, Comm. Algebra 35 (2007), 3 1019-1054. (2007) Zbl1118.20049MR2305248DOI10.1080/00927870601074798
  5. Dieudonné J., La Géométrie des Groups Classiques, Ergebnisser der Mathematik, Springer, Berlin-New York, 1997. 
  6. Dixon J.D., The Structure of Linear Groups, Van Nostrand Reinhold Company, London, 1971. Zbl0232.20079
  7. Dye R.H., 10.1016/0021-8693(80)90110-6, J. Algebra 66 (1980), 1 1-11. (1980) Zbl0444.20036MR0591244DOI10.1016/0021-8693(80)90110-6
  8. King O.H., 10.1016/0021-8693(85)90045-6, J. Algebra 96 (1985), 1 178-193. (1985) Zbl0572.20028MR0808847DOI10.1016/0021-8693(85)90045-6
  9. King O.H., On subgroups of the special linear group containing the special unitary group, Geom. Dedicata 19 (1985), 3 297-310. (1985) Zbl0579.20040MR0815209
  10. O'Meara O.T., Symplectic Groups, American Mathematical Society, Providence, R.I., 1978. Zbl0383.20001MR0502254
  11. Zalesskiĭ A.E., Serežkin V.N., Linear groups generated by transvections, Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. (1976) MR0412295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.