Archimedean frames, revisited

Jorge Martinez

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 25-44
  • ISSN: 0010-2628

Abstract

top
This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals.

How to cite

top

Martinez, Jorge. "Archimedean frames, revisited." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 25-44. <http://eudml.org/doc/250453>.

@article{Martinez2008,
abstract = {This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals.},
author = {Martinez, Jorge},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions; Archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions},
language = {eng},
number = {1},
pages = {25-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Archimedean frames, revisited},
url = {http://eudml.org/doc/250453},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Martinez, Jorge
TI - Archimedean frames, revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 25
EP - 44
AB - This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals.
LA - eng
KW - archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions; Archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions
UR - http://eudml.org/doc/250453
ER -

References

top
  1. Banaschewski B., Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37 2 (1996), 349-370. (1996) Zbl0853.06014MR1399006
  2. Banaschewski B., Pointfree topology and the spectrum of f -rings, in Ordered Algebraic Structures, W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.123-148. MR1445110
  3. Banaschewski B., 10.1016/S0022-4049(01)00101-3, J. Pure Appl. Algebra 168 (2002), 327-346. (2002) Zbl0998.06007MR1887162DOI10.1016/S0022-4049(01)00101-3
  4. Banaschewski B., Pultr A., Booleanization, Cahiers Topologie Géom. Différentielle Catég. 37 (1996), 1 41-60. (1996) Zbl0848.06010MR1383446
  5. De Marco G., Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova 69 (1983), 289-304. (1983) Zbl0543.13004MR0717003
  6. Dickman R.F., Porter J.R., Rubin L.R., 10.2140/pjm.1981.94.277, Pacific J. Math. 94 2 (1981), 277-295. (1981) Zbl0426.54005MR0628580DOI10.2140/pjm.1981.94.277
  7. Hager A.W., Martínez J., 10.1007/s10485-007-9062-y, Appl. Categ. Structures 15 (2007), 49-80. (2007) Zbl1122.06007MR2306538DOI10.1007/s10485-007-9062-y
  8. Herrlich H., Strecker G., 10.1007/BF01350722, Math. Ann. 177 (1968), 302-309. (1968) Zbl0157.29104MR0234427DOI10.1007/BF01350722
  9. Herrlich H., Strecker G., Category Theory, Sigma Series in Pure Mathematics 1, Heldermann Verlag, Berlin, 1979. Zbl1125.18300MR0571016
  10. Hochster M., 10.1090/S0002-9947-1969-0251026-X, Trans. Amer. Math. Soc. 142 (1969), 43-60. (1969) Zbl0184.29401MR0251026DOI10.1090/S0002-9947-1969-0251026-X
  11. Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge Univ. Press, Cambridge, 1982. Zbl0586.54001MR0698074
  12. Martínez J., 10.1007/BF02945124, Algebra Universalis 3 (1973), 247-260. (1973) MR0349503DOI10.1007/BF02945124
  13. Martínez J., Disjointifiable -groups, Algebra Universalis, to appear. 
  14. Martínez J., Zenk E.R., 10.1007/s00012-003-1841-1, Algebra Universalis 50 (2003), 231-257. (2003) Zbl1092.06011MR2037528DOI10.1007/s00012-003-1841-1
  15. Martínez J., Zenk E.R., 10.1016/j.jpaa.2007.02.008, J. Pure Appl. Algebra 211 (2007), 566-580. (2007) Zbl1121.06010MR2341271DOI10.1016/j.jpaa.2007.02.008
  16. Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, I: Compact regular frames, Appl. Categ. Structures, to appear. MR2421540
  17. Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, II: Compact normal joinfit frames, Appl. Categ. Structures, to appear. 
  18. Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, III: Coherent normal Yosida frames, submitted. 
  19. Monteiro A., L'arithmétique des filtres et les espaces topologiques, Segundo Symposium de Matemática, Villavicencio (Mendoza), 1954, pp.129-162. Zbl0318.06019MR0074805
  20. Pedicchio M.C., Tholen W., Special Topics in Order, Topology, Algebra and Sheaf Theory, Cambridge Univ. Press, Cambridge, 2001. Zbl1034.18001MR2054273
  21. Snodgrass J.T., Tsinakis C., 10.1007/BF01190439, Algebra Universalis 30 (1993), 311-318. (1993) Zbl0806.06011MR1225870DOI10.1007/BF01190439
  22. Utumi Y., On quotient rings, Osaka Math. J. 8 (1956), 1-18. (1956) Zbl0070.26601MR0078966

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.