Archimedean frames, revisited
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 1, page 25-44
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMartinez, Jorge. "Archimedean frames, revisited." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 25-44. <http://eudml.org/doc/250453>.
@article{Martinez2008,
abstract = {This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals.},
author = {Martinez, Jorge},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions; Archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions},
language = {eng},
number = {1},
pages = {25-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Archimedean frames, revisited},
url = {http://eudml.org/doc/250453},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Martinez, Jorge
TI - Archimedean frames, revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 25
EP - 44
AB - This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals.
LA - eng
KW - archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions; Archimedean lattice; joinfit coreflection; infinitesimals; fitness conditions
UR - http://eudml.org/doc/250453
ER -
References
top- Banaschewski B., Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37 2 (1996), 349-370. (1996) Zbl0853.06014MR1399006
- Banaschewski B., Pointfree topology and the spectrum of -rings, in Ordered Algebraic Structures, W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.123-148. MR1445110
- Banaschewski B., 10.1016/S0022-4049(01)00101-3, J. Pure Appl. Algebra 168 (2002), 327-346. (2002) Zbl0998.06007MR1887162DOI10.1016/S0022-4049(01)00101-3
- Banaschewski B., Pultr A., Booleanization, Cahiers Topologie Géom. Différentielle Catég. 37 (1996), 1 41-60. (1996) Zbl0848.06010MR1383446
- De Marco G., Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova 69 (1983), 289-304. (1983) Zbl0543.13004MR0717003
- Dickman R.F., Porter J.R., Rubin L.R., 10.2140/pjm.1981.94.277, Pacific J. Math. 94 2 (1981), 277-295. (1981) Zbl0426.54005MR0628580DOI10.2140/pjm.1981.94.277
- Hager A.W., Martínez J., 10.1007/s10485-007-9062-y, Appl. Categ. Structures 15 (2007), 49-80. (2007) Zbl1122.06007MR2306538DOI10.1007/s10485-007-9062-y
- Herrlich H., Strecker G., 10.1007/BF01350722, Math. Ann. 177 (1968), 302-309. (1968) Zbl0157.29104MR0234427DOI10.1007/BF01350722
- Herrlich H., Strecker G., Category Theory, Sigma Series in Pure Mathematics 1, Heldermann Verlag, Berlin, 1979. Zbl1125.18300MR0571016
- Hochster M., 10.1090/S0002-9947-1969-0251026-X, Trans. Amer. Math. Soc. 142 (1969), 43-60. (1969) Zbl0184.29401MR0251026DOI10.1090/S0002-9947-1969-0251026-X
- Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge Univ. Press, Cambridge, 1982. Zbl0586.54001MR0698074
- Martínez J., 10.1007/BF02945124, Algebra Universalis 3 (1973), 247-260. (1973) MR0349503DOI10.1007/BF02945124
- Martínez J., Disjointifiable -groups, Algebra Universalis, to appear.
- Martínez J., Zenk E.R., 10.1007/s00012-003-1841-1, Algebra Universalis 50 (2003), 231-257. (2003) Zbl1092.06011MR2037528DOI10.1007/s00012-003-1841-1
- Martínez J., Zenk E.R., 10.1016/j.jpaa.2007.02.008, J. Pure Appl. Algebra 211 (2007), 566-580. (2007) Zbl1121.06010MR2341271DOI10.1016/j.jpaa.2007.02.008
- Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, I: Compact regular frames, Appl. Categ. Structures, to appear. MR2421540
- Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, II: Compact normal joinfit frames, Appl. Categ. Structures, to appear.
- Martínez J., Zenk E.R., Epicompletion in frames with skeletal maps, III: Coherent normal Yosida frames, submitted.
- Monteiro A., L'arithmétique des filtres et les espaces topologiques, Segundo Symposium de Matemática, Villavicencio (Mendoza), 1954, pp.129-162. Zbl0318.06019MR0074805
- Pedicchio M.C., Tholen W., Special Topics in Order, Topology, Algebra and Sheaf Theory, Cambridge Univ. Press, Cambridge, 2001. Zbl1034.18001MR2054273
- Snodgrass J.T., Tsinakis C., 10.1007/BF01190439, Algebra Universalis 30 (1993), 311-318. (1993) Zbl0806.06011MR1225870DOI10.1007/BF01190439
- Utumi Y., On quotient rings, Osaka Math. J. 8 (1956), 1-18. (1956) Zbl0070.26601MR0078966
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.