On flat covers in varieties

David Kruml

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 19-24
  • ISSN: 0010-2628

Abstract

top
Flat covers do not exist in all varieties. We give a necessary condition for the existence of flat covers and some examples of varieties where not all algebras have flat covers.

How to cite

top

Kruml, David. "On flat covers in varieties." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 19-24. <http://eudml.org/doc/250455>.

@article{Kruml2008,
abstract = {Flat covers do not exist in all varieties. We give a necessary condition for the existence of flat covers and some examples of varieties where not all algebras have flat covers.},
author = {Kruml, David},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {flat object; flat cover; variety; cosimplicial object; flat object; flat cover; variety; cosimplicial object},
language = {eng},
number = {1},
pages = {19-24},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On flat covers in varieties},
url = {http://eudml.org/doc/250455},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Kruml, David
TI - On flat covers in varieties
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 19
EP - 24
AB - Flat covers do not exist in all varieties. We give a necessary condition for the existence of flat covers and some examples of varieties where not all algebras have flat covers.
LA - eng
KW - flat object; flat cover; variety; cosimplicial object; flat object; flat cover; variety; cosimplicial object
UR - http://eudml.org/doc/250455
ER -

References

top
  1. Adámek J., Rosický J., Locally Presentable and Accessible Categories, Cambridge University Press, Cambridge, 1994. MR1294136
  2. Bican L., El Bashir R., Enochs E., 10.1017/S0024609301008104, Bull. London Math. Soc. 33 (2001), 45-51. (2001) MR1832549DOI10.1017/S0024609301008104
  3. Borceux F., Rosický J., On von Neumann varieties, Theory Appl. Categ. 13 (2004), 5-26. (2004) Zbl1057.18004MR2116320
  4. Borceux F., Rosický J., 10.1007/s00012-006-1977-x, Algebra Universalis 56 (2007), 17-35. (2007) Zbl1116.08004MR2280436DOI10.1007/s00012-006-1977-x
  5. Johnstone P.T., 10.1016/0022-4049(89)90075-3, J. Pure Appl. Algebra 61 (1989), 251-256. (1989) MR1027744DOI10.1016/0022-4049(89)90075-3
  6. Kilp M., Knauer U., Mikhalev A.V., Monoids, Acts and Categories, Walter de Gruyter, New York, 2000. Zbl0945.20036MR1751666
  7. Rosický J., 10.1016/S0021-8693(02)00043-1, J. Algebra 263 (2002), 1-13. (2002) Zbl1024.18002MR1925005DOI10.1016/S0021-8693(02)00043-1
  8. Rosický J., 10.1016/j.jalgebra.2003.09.014, J. Algebra 272 (2004), 701-710. (2004) Zbl1040.18008MR2028077DOI10.1016/j.jalgebra.2003.09.014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.