Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
Archivum Mathematicum (2008)
- Volume: 044, Issue: 4, page 285-293
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSaddeek, A. M., and Ahmed, Sayed A.. "Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces." Archivum Mathematicum 044.4 (2008): 285-293. <http://eudml.org/doc/250462>.
@article{Saddeek2008,
abstract = {The weak convergence of the iterative generated by $J(u_\{n+1\}-u_\{n\})= \tau (Fu_\{n\}-Ju_\{n\})$, $n \ge 0$, $\big (0< \tau =\min \big \lbrace 1,\frac\{1\}\{\lambda \}\big \rbrace \big )$ to a coincidence point of the mappings $F,J\colon V \rightarrow V^\{\star \}$ is investigated, where $V$ is a real reflexive Banach space and $V^\{\star \}$ its dual (assuming that $V^\{\star \}$ is strictly convex). The basic assumptions are that $J$ is the duality mapping, $J-F$ is demiclosed at $0$, coercive, potential and bounded and that there exists a non-negative real valued function $r(u,\eta )$ such that \[ \sup \_\{u,\eta \in V\} \lbrace r(u,\eta )\rbrace =\lambda < \infty \]\[ r(u,\eta )\Vert J(u- \eta ) \Vert \_\{V^\{\star \}\}\ge \Vert (J -F)(u)-(J-F)(\eta ) \Vert \_\{V^\{\star \}\}\,, \quad \forall ~ u,\eta \in V\,. \]
Furthermore, the case when $V$ is a Hilbert space is given. An application of our results to filtration problems with limit gradient in a domain with semipermeable boundary is also provided.},
author = {Saddeek, A. M., Ahmed, Sayed A.},
journal = {Archivum Mathematicum},
keywords = {iteration; coincidence point; demiclosed mappings; pseudo-monotone mappings; bounded Lipschitz continuous coercive mappings; filtration problems; iteration; coincidence point; demiclosed mapping; pseudo-monotone mapping; bounded Lipschitz continuous coercive mapping; filtration problem},
language = {eng},
number = {4},
pages = {285-293},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces},
url = {http://eudml.org/doc/250462},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Saddeek, A. M.
AU - Ahmed, Sayed A.
TI - Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 4
SP - 285
EP - 293
AB - The weak convergence of the iterative generated by $J(u_{n+1}-u_{n})= \tau (Fu_{n}-Ju_{n})$, $n \ge 0$, $\big (0< \tau =\min \big \lbrace 1,\frac{1}{\lambda }\big \rbrace \big )$ to a coincidence point of the mappings $F,J\colon V \rightarrow V^{\star }$ is investigated, where $V$ is a real reflexive Banach space and $V^{\star }$ its dual (assuming that $V^{\star }$ is strictly convex). The basic assumptions are that $J$ is the duality mapping, $J-F$ is demiclosed at $0$, coercive, potential and bounded and that there exists a non-negative real valued function $r(u,\eta )$ such that \[ \sup _{u,\eta \in V} \lbrace r(u,\eta )\rbrace =\lambda < \infty \]\[ r(u,\eta )\Vert J(u- \eta ) \Vert _{V^{\star }}\ge \Vert (J -F)(u)-(J-F)(\eta ) \Vert _{V^{\star }}\,, \quad \forall ~ u,\eta \in V\,. \]
Furthermore, the case when $V$ is a Hilbert space is given. An application of our results to filtration problems with limit gradient in a domain with semipermeable boundary is also provided.
LA - eng
KW - iteration; coincidence point; demiclosed mappings; pseudo-monotone mappings; bounded Lipschitz continuous coercive mappings; filtration problems; iteration; coincidence point; demiclosed mapping; pseudo-monotone mapping; bounded Lipschitz continuous coercive mapping; filtration problem
UR - http://eudml.org/doc/250462
ER -
References
top- Badriev, I. B., Karchevskii, M. M., On the convergance of the iterative process in Banach spaces, Issledovaniya po prikladnoi matematike (Investigations in Applied Mathematics) 17 (1990), 3–15, in Russian. (1990) MR1127806
- Brezis, H., Nirenberg, L., Stampacchia, G., A remark on Ky Fan’s minimax principle, Boll. Un. Mat. Ital. 6 (1972), 293–300. (1972) Zbl0264.49013MR0324498
- Gajewski, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie Verlag Berlin, 1974. (1974) MR0636412
- Goebel, K., Kirk, W. A., Topics in metric fixed point theory, Cambridge Stud. Adv. Math. 28 (1990). (1990) Zbl0708.47031MR1074005
- Istratescu, V.I., Fixed Point Theory, Reidel, Dordrecht, 1981. (1981) Zbl0465.47035MR0620639
- Karchevskii, M. M., Badriev, I. B., Nonlinear problems of filtration theory with dis continuous monotone operators, Chislennye Metody Mekh. Sploshnoi Sredy 10 (5) (1979), 63–78, in Russian. (1979) MR0628672
- Lions, J. L., Quelques Methods de Resolution des Problemes aux Limites Nonlineaires, Dunod and Gauthier-Villars, 1969. (1969) MR0259693
- Lyashko, A. D., Karchevskii, M. M., On the solution of some nonlinear problems of filtration theory, Izv. Vyssh. Uchebn. Zaved., Matematika 6 (1975), 73–81, in Russian. (1975)
- Mann, W. R., 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) Zbl0050.11603MR0054846DOI10.1090/S0002-9939-1953-0054846-3
- Maruster, S., The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc. 63 (1) (1977), 69–73. (1977) Zbl0355.47037MR0636944
- Zeidler, E., Nonlinear Functional Analysis and Its Applications, Nonlinear Monotone Operators, vol. II(B), Springer Verlag, Berlin, 1990. (1990) Zbl0684.47029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.