Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 1, page 67-78
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNowak, Grzegorz. "Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 67-78. <http://eudml.org/doc/250465>.
@article{Nowak2008,
abstract = {For some classes of functions $f$ locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval $[0;\infty )$, the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of $f$ is estimated.},
author = {Nowak, Grzegorz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bleimann; Butzer and Hahn operator; Lebesgue-Denjoy point; rate of convergence; Lebesgue-Denjoy point; rate of convergence},
language = {eng},
number = {1},
pages = {67-78},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators},
url = {http://eudml.org/doc/250465},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Nowak, Grzegorz
TI - Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 67
EP - 78
AB - For some classes of functions $f$ locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval $[0;\infty )$, the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of $f$ is estimated.
LA - eng
KW - Bleimann; Butzer and Hahn operator; Lebesgue-Denjoy point; rate of convergence; Lebesgue-Denjoy point; rate of convergence
UR - http://eudml.org/doc/250465
ER -
References
top- Abel U., On the asymptotic approximation with Bivariate operators of Bleimann, Butzer and Hahn, J. Approx. Theory 97 (1999), 181-198. (1999) Zbl0928.41012MR1676351
- Abel U., 10.1016/0019-3577(96)88653-8, Indag. Math. (N.S.) 7 (1996), 1-9. (1996) Zbl0851.47009MR1621356DOI10.1016/0019-3577(96)88653-8
- Abel U., Ivan M., 10.1007/s100920050028, Calcolo 36 3 (1999), 143-160. (1999) Zbl0931.41013MR1742307DOI10.1007/s100920050028
- Abel U., Ivan M., A Kantorovich variant of the Bleimann, Butzer and Hahn operators, Rend. Circ. Mat. Palermo (2) Suppl. (2002), 68 205-218. (2002) Zbl1012.41016MR1975505
- Bleimann G., Butzer P.L., Hahn L., A Bernstein-type operator approximating continuous functions of the semi-axis, Indag. Math. 42 (1980), 255-262. (1980) MR0587054
- de la Cal J., Luquin F., 10.1016/0021-9045(92)90108-Z, J. Approx. Theory 68 (1992), 322-329. (1992) MR1152222DOI10.1016/0021-9045(92)90108-Z
- Della Vecchia B., Some properties of a rational operator of Bernstein-type, in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.177-185. MR1114772
- Hermann T., On the operator of Bleimann, Butzer and Hahn, Colloq. Math. Soc. János Bolyai 58 (1991), 355-360. (1991) Zbl0784.41016MR1211445
- Khan R.A., 10.1016/0021-9045(88)90024-X, J. Approx. Theory 53 (1988), 295-303. (1988) Zbl0676.41024MR0947433DOI10.1016/0021-9045(88)90024-X
- Khan R.A., Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn, in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.497-504. MR1114792
- Jayasri C., Sitaraman Y., 10.1016/0377-0427(93)90008-Y, J. Comput. Appl. Math. 47 2 (1993), 267-272. (1993) Zbl0779.41008MR1237316DOI10.1016/0377-0427(93)90008-Y
- Nowak G., Pych-Taberska P., Approximation properties of the generalized Favard-Kantorovich operators, Comment. Math. Prace Mat. 39 (1999), 139-152. (1999) Zbl0970.41014MR1739024
- Saks S., Theory of the Integral, New York, 1937. Zbl0017.30004
- Totik V., Uniform approximation by Bernstein-type operators, Indag. Math. 46 (1984), 87-93. (1984) Zbl0538.41035MR0748982
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.