Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators

Grzegorz Nowak

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 1, page 67-78
  • ISSN: 0010-2628

Abstract

top
For some classes of functions f locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval [ 0 ; ) , the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of f is estimated.

How to cite

top

Nowak, Grzegorz. "Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators." Commentationes Mathematicae Universitatis Carolinae 49.1 (2008): 67-78. <http://eudml.org/doc/250465>.

@article{Nowak2008,
abstract = {For some classes of functions $f$ locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval $[0;\infty )$, the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of $f$ is estimated.},
author = {Nowak, Grzegorz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bleimann; Butzer and Hahn operator; Lebesgue-Denjoy point; rate of convergence; Lebesgue-Denjoy point; rate of convergence},
language = {eng},
number = {1},
pages = {67-78},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators},
url = {http://eudml.org/doc/250465},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Nowak, Grzegorz
TI - Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 1
SP - 67
EP - 78
AB - For some classes of functions $f$ locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval $[0;\infty )$, the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of $f$ is estimated.
LA - eng
KW - Bleimann; Butzer and Hahn operator; Lebesgue-Denjoy point; rate of convergence; Lebesgue-Denjoy point; rate of convergence
UR - http://eudml.org/doc/250465
ER -

References

top
  1. Abel U., On the asymptotic approximation with Bivariate operators of Bleimann, Butzer and Hahn, J. Approx. Theory 97 (1999), 181-198. (1999) Zbl0928.41012MR1676351
  2. Abel U., 10.1016/0019-3577(96)88653-8, Indag. Math. (N.S.) 7 (1996), 1-9. (1996) Zbl0851.47009MR1621356DOI10.1016/0019-3577(96)88653-8
  3. Abel U., Ivan M., 10.1007/s100920050028, Calcolo 36 3 (1999), 143-160. (1999) Zbl0931.41013MR1742307DOI10.1007/s100920050028
  4. Abel U., Ivan M., A Kantorovich variant of the Bleimann, Butzer and Hahn operators, Rend. Circ. Mat. Palermo (2) Suppl. (2002), 68 205-218. (2002) Zbl1012.41016MR1975505
  5. Bleimann G., Butzer P.L., Hahn L., A Bernstein-type operator approximating continuous functions of the semi-axis, Indag. Math. 42 (1980), 255-262. (1980) MR0587054
  6. de la Cal J., Luquin F., 10.1016/0021-9045(92)90108-Z, J. Approx. Theory 68 (1992), 322-329. (1992) MR1152222DOI10.1016/0021-9045(92)90108-Z
  7. Della Vecchia B., Some properties of a rational operator of Bernstein-type, in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.177-185. MR1114772
  8. Hermann T., On the operator of Bleimann, Butzer and Hahn, Colloq. Math. Soc. János Bolyai 58 (1991), 355-360. (1991) Zbl0784.41016MR1211445
  9. Khan R.A., 10.1016/0021-9045(88)90024-X, J. Approx. Theory 53 (1988), 295-303. (1988) Zbl0676.41024MR0947433DOI10.1016/0021-9045(88)90024-X
  10. Khan R.A., Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn, in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.497-504. MR1114792
  11. Jayasri C., Sitaraman Y., 10.1016/0377-0427(93)90008-Y, J. Comput. Appl. Math. 47 2 (1993), 267-272. (1993) Zbl0779.41008MR1237316DOI10.1016/0377-0427(93)90008-Y
  12. Nowak G., Pych-Taberska P., Approximation properties of the generalized Favard-Kantorovich operators, Comment. Math. Prace Mat. 39 (1999), 139-152. (1999) Zbl0970.41014MR1739024
  13. Saks S., Theory of the Integral, New York, 1937. Zbl0017.30004
  14. Totik V., Uniform approximation by Bernstein-type operators, Indag. Math. 46 (1984), 87-93. (1984) Zbl0538.41035MR0748982

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.