Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions

Ahmed Alsaedi

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 4, page 295-305
  • ISSN: 0044-8753

Abstract

top
A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.

How to cite

top

Alsaedi, Ahmed. "Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions." Archivum Mathematicum 044.4 (2008): 295-305. <http://eudml.org/doc/250467>.

@article{Alsaedi2008,
abstract = {A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.},
author = {Alsaedi, Ahmed},
journal = {Archivum Mathematicum},
keywords = {duffing equation; integral boundary conditions; quasilinearization; quadratic convergence; Duffing equation; integral boundary condition; quasilinearization; quadratic convergence},
language = {eng},
number = {4},
pages = {295-305},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions},
url = {http://eudml.org/doc/250467},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Alsaedi, Ahmed
TI - Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 4
SP - 295
EP - 305
AB - A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.
LA - eng
KW - duffing equation; integral boundary conditions; quasilinearization; quadratic convergence; Duffing equation; integral boundary condition; quasilinearization; quadratic convergence
UR - http://eudml.org/doc/250467
ER -

References

top
  1. Ahmad, B., A quasilinearization method for a class of integro-differential equations with mixed nonlinearities, Nonlinear Anal. Real World Appl. 7 (2006), 997–1004. (2006) Zbl1111.45005MR2260894
  2. Ahmad, B., Alsaedi, A., Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009), 358–367. (2009) Zbl1154.34314MR2451715
  3. Ahmad, B., Alsaedi, A., Alghamdi, B., Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl. 9 (2008), 1727–1740. (2008) Zbl1154.34311MR2422576
  4. Ahmad, B., Naz, U., Khan, R. A., 10.4134/BKMS.2005.42.1.017, Bull. Korean Math. Soc. 42 (2005), 17–22. (2005) Zbl1090.34510MR2122762DOI10.4134/BKMS.2005.42.1.017
  5. Ahmad, B., Nieto, J. J., The monotone iterative technique for three-point second-order integrodifferential boundary value problems with p-Laplacian, Boundary Value Problems 2007 (2007), 9pp., Article ID 57481, doi: 10.1155/2007/57481. (2007) Zbl1149.65098MR2320689
  6. Ahmad, B., Nieto, J. J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal. 69 (2008), 3291–3298. (2008) Zbl1158.34049MR2450538
  7. Ahmad, B., Nieto, J. J., Shahzad, N., 10.1006/jmaa.2000.7352, J. Math. Anal. Appl. 257 (2001), 356–363. (2001) MR1827327DOI10.1006/jmaa.2000.7352
  8. Ahmad, B., Sivasundaram, S., 10.1016/j.na.2006.01.033, Nonlinear Anal. 65 (2006), 2260–2276. (2006) Zbl1111.45006MR2267622DOI10.1016/j.na.2006.01.033
  9. Bellman, R., Kalaba, R., Quasilinearization and Nonlinear Boundary Value Problems, Amer. Elsevier, New York, 1965. (1965) Zbl0139.10702MR0178571
  10. Bouziani, A., Benouar, N. E., Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math. 15 (1998), 47–58. (1998) Zbl0921.35068MR1654526
  11. Cabada, A., Nieto, J. J., 10.1016/S0096-3003(96)00285-8, Appl. Math. Comput. 87 (1997), 217–226. (1997) Zbl0904.65067MR1468300DOI10.1016/S0096-3003(96)00285-8
  12. Cannon, J. R., Encyclopedia of Math. and its Appl., ch. The one-dimensional heat equation, Addison-Wesley, Mento Park, CA, 1984. (1984) MR0747979
  13. Cannon, J. R., Esteva, S. Perez, Hoek, J. Van Der, 10.1137/0724036, SIAM. J. Numer. Anal. 24 (1987), 499–515. (1987) MR0888747DOI10.1137/0724036
  14. Choi, Y. S., Chan, K. Y., 10.1016/0362-546X(92)90148-8, Nonlinear Anal. 18 (1992), 317–331. (1992) Zbl0757.35031MR1150422DOI10.1016/0362-546X(92)90148-8
  15. Denche, M., Marhoune, A. L., 10.1155/S1048953303000054, J. Appl. Math. Stoch. Anal. 16 (2003), 69–79. (2003) Zbl1035.35085MR1973079DOI10.1155/S1048953303000054
  16. Ewing, R. E., Lin, T., 10.1016/0309-1708(91)90055-S, Adv. Water Res. 14 (1991), 89–97. (1991) MR1108193DOI10.1016/0309-1708(91)90055-S
  17. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A., 10.1007/s007910050030, Comput. Vis. Sci. 2 (1999), 75–83. (1999) Zbl1067.76624DOI10.1007/s007910050030
  18. Ionkin, N. I., Solution of a boundary value problem in heat condition with a nonclassical boundary condition, Differ. Uravn. 13 (1977), 294–304. (1977) MR0603291
  19. Kartynnik, A. V., Three-point boundary value problem with an integral space-variable condition for a second-order parabolic equation, Differential Equations 26 (1990), 1160–1166. (1990) Zbl0729.35053MR1080432
  20. Ladde, G. S., Lakshmikantham, V., Vatsala, A. S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985. (1985) Zbl0658.35003MR0855240
  21. Lakshmikantham, V., Nieto, J. J., Generalized quasilinearization for nonlinear first order ordinary differential equations, Nonlinear Times & Digest 2 (1995), 1–10. (1995) Zbl0855.34013MR1333329
  22. Lakshmikantham, V., Vatsala, A. S., Mathematics and its Applications, 440, ch. Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1998. (1998) MR1640601
  23. Nieto, J. J., Rodriguez-Lopez, R., 10.1016/j.camwa.2006.01.012, Comput. Math. Appl. 52 (2006), 471–484. (2006) Zbl1140.34406MR2263515DOI10.1016/j.camwa.2006.01.012
  24. Shi, P., 10.1137/0524004, SIAM J. Math. Anal. 24 (1993), 46–58. (1993) MR1199526DOI10.1137/0524004
  25. Vatsala, A. S., Yang, J., Monotone iterative technique for semilinear elliptic systems, Boundary Value Probl. 2 (2005), 93–106. (2005) Zbl1143.65388MR2198745
  26. Yurchuk, N. I., Mixed problem with an integral condition for certain parabolic equations, Differential Equations 22 (1986), 1457–1463. (1986) Zbl0654.35041MR0880769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.