Powers of elements in Jordan loops
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 291-299
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPula, Kyle. "Powers of elements in Jordan loops." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 291-299. <http://eudml.org/doc/250469>.
@article{Pula2008,
abstract = {A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$.},
author = {Pula, Kyle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop; commutative loops; identities; finite nonassociative Jordan loops; Jordan quasigroups; finite Jordan loops},
language = {eng},
number = {2},
pages = {291-299},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Powers of elements in Jordan loops},
url = {http://eudml.org/doc/250469},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Pula, Kyle
TI - Powers of elements in Jordan loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 291
EP - 299
AB - A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$.
LA - eng
KW - Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop; commutative loops; identities; finite nonassociative Jordan loops; Jordan quasigroups; finite Jordan loops
UR - http://eudml.org/doc/250469
ER -
References
top- Bruck R.H., A Survey of Binary Systems, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Vol. 20, Springer, Berlin, 1958. Zbl0141.01401MR0093552
- Goodaire E.G., Keeping R.G., Jordan loops and loop rings, preprint. MR2376868
- Kinyon M.K., Pula J.K., Vojtěchovský P., Admissible Orders of Jordan Loops, J. Combinatorial Designs, to appear.
- McCrimmon K., A Taste of Jordan Algebras, Universitext, Springer, New York, 2004. Zbl1044.17001MR2014924
- McCune W.W., Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003; http://www.cs.unm.edu/mccune/mace4/.
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.