When is it hard to show that a quasigroup is a loop?
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 241-247
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKeedwell, Anthony Donald. "When is it hard to show that a quasigroup is a loop?." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 241-247. <http://eudml.org/doc/250476>.
@article{Keedwell2008,
abstract = {We contrast the simple proof that a quasigroup which satisfies the Moufang identity $(x\cdot yz)x = xy\cdot zx$ is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity $(xy\cdot z)y=x(y\cdot zy)$ is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.},
author = {Keedwell, Anthony Donald},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang quasigroups; Moufang loops; identities of Bol-Moufang type; Moufang law; quasigroups; loops; laws of Bol-Moufang type; identities; quasigroup varieties},
language = {eng},
number = {2},
pages = {241-247},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {When is it hard to show that a quasigroup is a loop?},
url = {http://eudml.org/doc/250476},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Keedwell, Anthony Donald
TI - When is it hard to show that a quasigroup is a loop?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 241
EP - 247
AB - We contrast the simple proof that a quasigroup which satisfies the Moufang identity $(x\cdot yz)x = xy\cdot zx$ is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity $(xy\cdot z)y=x(y\cdot zy)$ is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.
LA - eng
KW - Moufang quasigroups; Moufang loops; identities of Bol-Moufang type; Moufang law; quasigroups; loops; laws of Bol-Moufang type; identities; quasigroup varieties
UR - http://eudml.org/doc/250476
ER -
References
top- Drápal A., Jedlička P., On loop identities that can be obtained by nuclear identification, submitted.
- Fenyves F., Extra loops I, Publ. Math. Debrecen 15 (1968), 235-238. (1968) Zbl0172.02401MR0237695
- Fenyves F., Extra loops II, Publ. Math. Debrecen 16 (1969), 187-192. (1969) MR0262409
- Garrison G.R., Quasi-groups, Ann. Math. (2) 41 (1940), 474-487. (1940) Zbl0024.15005MR0002150
- Izbash V.I., Shcherbacov V.A., On quasigroups with Moufang identity, Abstracts of third Internat. Conf. in memory of M.I. Karbapolov, Krasnoyarsk, August 1993 (in Russian), pp.134-135. Zbl1027.20507
- Kunen K., 10.1006/jabr.1996.0216, J. Algebra 183 (1996), 231-234. (1996) Zbl0855.20056MR1397396DOI10.1006/jabr.1996.0216
- Kunen K., 10.1006/jabr.1996.0321, J. Algebra 185 (1996), 194-204. (1996) Zbl0860.20053MR1409983DOI10.1006/jabr.1996.0321
- Phillips J.D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), 259-271. (2005) Zbl1102.20054MR2219409DOI10.1007/s00012-005-1941-1
- Phillips J.D., Vojtěchovský P., 10.1016/j.jalgebra.2005.07.011, J. Algebra 293 (2005), 17-33. (2005) Zbl1101.20046MR2173964DOI10.1016/j.jalgebra.2005.07.011
- Shcherbacov V.A., Izbash V.I., On quasigroups with Moufang identity, Bul. Acad. Stiinte Repub. Moldova Mat. 1998 2 109-116. Zbl1027.20507MR1788977
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.