OD-characterization of almost simple groups related to L 2 ( 49 )

Liang Cai Zhang; Wu Jie Shi

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 3, page 191-199
  • ISSN: 0044-8753

Abstract

top
In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group L 2 ( 49 ) . As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to L 2 ( 49 ) except L 2 ( 49 ) · 2 2 . Also, we prove that if M is an almost simple group related to L 2 ( 49 ) except L 2 ( 49 ) · 2 2 and G is a finite group such that | G | = | M | and Γ ( G ) = Γ ( M ) , then G M .

How to cite

top

Zhang, Liang Cai, and Shi, Wu Jie. "OD-characterization of almost simple groups related to $L_{2}(49)$." Archivum Mathematicum 044.3 (2008): 191-199. <http://eudml.org/doc/250481>.

@article{Zhang2008,
abstract = {In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_\{2\}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_\{2\}(49)$ except $L_\{2\}(49)\cdot 2^\{2\}$. Also, we prove that if $M$ is an almost simple group related to $L_\{2\}(49)$ except $L_\{2\}(49)\cdot 2^\{2\}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.},
author = {Zhang, Liang Cai, Shi, Wu Jie},
journal = {Archivum Mathematicum},
keywords = {almost simple group; prime graph; degree of a vertex; degree pattern; almost simple groups; prime graphs; degrees of vertices; degree patterns; order components; sets of element orders; projective special linear groups},
language = {eng},
number = {3},
pages = {191-199},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {OD-characterization of almost simple groups related to $L_\{2\}(49)$},
url = {http://eudml.org/doc/250481},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Zhang, Liang Cai
AU - Shi, Wu Jie
TI - OD-characterization of almost simple groups related to $L_{2}(49)$
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 191
EP - 199
AB - In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.
LA - eng
KW - almost simple group; prime graph; degree of a vertex; degree pattern; almost simple groups; prime graphs; degrees of vertices; degree patterns; order components; sets of element orders; projective special linear groups
UR - http://eudml.org/doc/250481
ER -

References

top
  1. Chen, G. Y., On structure of Frobenius and 2 -Frobenius group, J. Southwest China Normal Univ. 20 (5) (1995), 485–487, (in Chinese). (1995) 
  2. Chen, Z. M., Shi, W. J., On C p , p -simple groups, J. Southwest China Normal Univ. 18 (3) (1993), 249–256, (in Chinese). (1993) 
  3. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Clarendon Press (Oxford), London – New York, 1985. (1985) Zbl0568.20001MR0827219
  4. Gorenstein, D., Finite Groups, Harper and Row, New York, 1980. (1980) Zbl0463.20012MR0569209
  5. Higman, G., 10.1112/jlms/s1-32.3.335, J. London Math. Soc. 32 (1957), 335–342. (1957) Zbl0079.03204MR0089205DOI10.1112/jlms/s1-32.3.335
  6. Iiyori, N., 10.1006/jabr.1994.1001, J. Algebra 163 (1994), 1–8. (1994) MR1257302DOI10.1006/jabr.1994.1001
  7. Kondratev, A. S., On prime graph components of finite simple groups, Mat. Sb. 180 (6) (1989), 787–797. (1989) MR1015040
  8. Mazurov, V. D., 10.1007/BF00739417, Algebra and Logic 33 (1) (1994), 49–55. (1994) Zbl0823.20024MR1287011DOI10.1007/BF00739417
  9. Mazurov, V. D., 10.1007/BF02671951, Algebra and Logic 36 (1) (1997), 23–32. (1997) Zbl0880.20007MR1454690DOI10.1007/BF02671951
  10. Moghaddamfar, A. R., Zokayi, A. R., Recognizing finite groups through order and degree pattern, to appear in Algebra Colloquium. 
  11. Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R., A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq. 12 (3) (2005), 431–442. (2005) Zbl1072.20015MR2144997
  12. Passman, D., Permutation Groups, Benjamin Inc., New York, 1968. (1968) Zbl0179.04405MR0237627
  13. Shi, W. J., 10.1090/conm/082/982286, Contemp. Math. 82 (1989), 171–180. (1989) Zbl0668.20019MR0982286DOI10.1090/conm/082/982286
  14. Shi, W. J., A new characteriztion of the sporadic simple groups, Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin – New York, 1989, pp. 531–540. (1989) MR0981868
  15. Shi, W. J., Pure quantitive characterization of finite simple groups (I), Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316–326. (1994) MR1402664
  16. Shi, W. J., Bi, J. X., A characteristic property for each finite projective special linear group, Lecture Notes in Math. 1456 (1990), 171–180Wi. (1990) Zbl0718.20009MR1092230
  17. Williams, J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (2) (1981), 487–513. (1981) Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
  18. Yamaki, H., 10.1080/00927878308822977, Comm. Algebra 11 (1983), 2513–2518. (1983) MR0733339DOI10.1080/00927878308822977
  19. Yamaki, H., 10.1007/BF01246125, Arch. Math. 42 (1984), 344–347. (1984) Zbl0528.20024MR0753355DOI10.1007/BF01246125
  20. Yamaki, H., 10.1016/0021-8693(85)90017-1, J. Algebra 96 (1985), 391–396. (1985) Zbl0572.20013MR0810536DOI10.1016/0021-8693(85)90017-1
  21. Yamaki, H., A conjecture of Frobenius and the sporadic simple groups II, Math. Comp. 46 (1986), 609–611, Supplement, Math. Comp., 46, 1986), S43-S46. (1986) Zbl0585.20008MR0829631
  22. Zhang, L. C., Shi, W. J., O D -characterization of almost simple groups related to U 4 ( 3 ) , to appear. MR2425165
  23. Zhang, L. C., Shi, W. J., O D -characterization of simple K 4 -groups, to appear in Algebra Colloquium (in press). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.