OD-characterization of almost simple groups related to
Archivum Mathematicum (2008)
- Volume: 044, Issue: 3, page 191-199
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topZhang, Liang Cai, and Shi, Wu Jie. "OD-characterization of almost simple groups related to $L_{2}(49)$." Archivum Mathematicum 044.3 (2008): 191-199. <http://eudml.org/doc/250481>.
@article{Zhang2008,
abstract = {In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_\{2\}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_\{2\}(49)$ except $L_\{2\}(49)\cdot 2^\{2\}$. Also, we prove that if $M$ is an almost simple group related to $L_\{2\}(49)$ except $L_\{2\}(49)\cdot 2^\{2\}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.},
author = {Zhang, Liang Cai, Shi, Wu Jie},
journal = {Archivum Mathematicum},
keywords = {almost simple group; prime graph; degree of a vertex; degree pattern; almost simple groups; prime graphs; degrees of vertices; degree patterns; order components; sets of element orders; projective special linear groups},
language = {eng},
number = {3},
pages = {191-199},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {OD-characterization of almost simple groups related to $L_\{2\}(49)$},
url = {http://eudml.org/doc/250481},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Zhang, Liang Cai
AU - Shi, Wu Jie
TI - OD-characterization of almost simple groups related to $L_{2}(49)$
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 191
EP - 199
AB - In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.
LA - eng
KW - almost simple group; prime graph; degree of a vertex; degree pattern; almost simple groups; prime graphs; degrees of vertices; degree patterns; order components; sets of element orders; projective special linear groups
UR - http://eudml.org/doc/250481
ER -
References
top- Chen, G. Y., On structure of Frobenius and -Frobenius group, J. Southwest China Normal Univ. 20 (5) (1995), 485–487, (in Chinese). (1995)
- Chen, Z. M., Shi, W. J., On -simple groups, J. Southwest China Normal Univ. 18 (3) (1993), 249–256, (in Chinese). (1993)
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Clarendon Press (Oxford), London – New York, 1985. (1985) Zbl0568.20001MR0827219
- Gorenstein, D., Finite Groups, Harper and Row, New York, 1980. (1980) Zbl0463.20012MR0569209
- Higman, G., 10.1112/jlms/s1-32.3.335, J. London Math. Soc. 32 (1957), 335–342. (1957) Zbl0079.03204MR0089205DOI10.1112/jlms/s1-32.3.335
- Iiyori, N., 10.1006/jabr.1994.1001, J. Algebra 163 (1994), 1–8. (1994) MR1257302DOI10.1006/jabr.1994.1001
- Kondratev, A. S., On prime graph components of finite simple groups, Mat. Sb. 180 (6) (1989), 787–797. (1989) MR1015040
- Mazurov, V. D., 10.1007/BF00739417, Algebra and Logic 33 (1) (1994), 49–55. (1994) Zbl0823.20024MR1287011DOI10.1007/BF00739417
- Mazurov, V. D., 10.1007/BF02671951, Algebra and Logic 36 (1) (1997), 23–32. (1997) Zbl0880.20007MR1454690DOI10.1007/BF02671951
- Moghaddamfar, A. R., Zokayi, A. R., Recognizing finite groups through order and degree pattern, to appear in Algebra Colloquium.
- Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R., A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq. 12 (3) (2005), 431–442. (2005) Zbl1072.20015MR2144997
- Passman, D., Permutation Groups, Benjamin Inc., New York, 1968. (1968) Zbl0179.04405MR0237627
- Shi, W. J., 10.1090/conm/082/982286, Contemp. Math. 82 (1989), 171–180. (1989) Zbl0668.20019MR0982286DOI10.1090/conm/082/982286
- Shi, W. J., A new characteriztion of the sporadic simple groups, Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin – New York, 1989, pp. 531–540. (1989) MR0981868
- Shi, W. J., Pure quantitive characterization of finite simple groups (I), Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316–326. (1994) MR1402664
- Shi, W. J., Bi, J. X., A characteristic property for each finite projective special linear group, Lecture Notes in Math. 1456 (1990), 171–180Wi. (1990) Zbl0718.20009MR1092230
- Williams, J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (2) (1981), 487–513. (1981) Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
- Yamaki, H., 10.1080/00927878308822977, Comm. Algebra 11 (1983), 2513–2518. (1983) MR0733339DOI10.1080/00927878308822977
- Yamaki, H., 10.1007/BF01246125, Arch. Math. 42 (1984), 344–347. (1984) Zbl0528.20024MR0753355DOI10.1007/BF01246125
- Yamaki, H., 10.1016/0021-8693(85)90017-1, J. Algebra 96 (1985), 391–396. (1985) Zbl0572.20013MR0810536DOI10.1016/0021-8693(85)90017-1
- Yamaki, H., A conjecture of Frobenius and the sporadic simple groups II, Math. Comp. 46 (1986), 609–611, Supplement, Math. Comp., 46, 1986), S43-S46. (1986) Zbl0585.20008MR0829631
- Zhang, L. C., Shi, W. J., -characterization of almost simple groups related to , to appear. MR2425165
- Zhang, L. C., Shi, W. J., -characterization of simple -groups, to appear in Algebra Colloquium (in press).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.