Möbius gyrovector spaces in quantum information and computation
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 341-356
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topUngar, Abraham A.. "Möbius gyrovector spaces in quantum information and computation." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 341-356. <http://eudml.org/doc/250484>.
@article{Ungar2008,
abstract = {Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball $\mathbb \{B\}^2$ of a Euclidean 2-space $\mathbb \{R\}^2$ is presented. This decomplexification proves useful, enabling the resulting real Möbius addition to be generalized into the open unit ball $\mathbb \{B\}^n$ of a Euclidean $n$-space $\mathbb \{R\}^n$ for all $n\ge 2$. Similarly, the decomplexification of the complex $2\times 2$ qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch gyrovector, into an equivalent (in a specified sense) real $4\times 4$ matrix is presented. As in the case of Möbius addition, this decomplexification proves useful, enabling the resulting real matrix to be generalized into a corresponding matrix parametrized by a real, $n$-dimensional Bloch gyrovector, for all $n\ge 2$. The applicability of the $n$-dimensional Bloch gyrovector with $n=3$ to QIC is well known. The problem as to whether the $n$-dimensional Bloch gyrovector with $n>3$ is applicable to QIC as well remains to be explored.},
author = {Ungar, Abraham A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces; quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces},
language = {eng},
number = {2},
pages = {341-356},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Möbius gyrovector spaces in quantum information and computation},
url = {http://eudml.org/doc/250484},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Ungar, Abraham A.
TI - Möbius gyrovector spaces in quantum information and computation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 341
EP - 356
AB - Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball $\mathbb {B}^2$ of a Euclidean 2-space $\mathbb {R}^2$ is presented. This decomplexification proves useful, enabling the resulting real Möbius addition to be generalized into the open unit ball $\mathbb {B}^n$ of a Euclidean $n$-space $\mathbb {R}^n$ for all $n\ge 2$. Similarly, the decomplexification of the complex $2\times 2$ qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch gyrovector, into an equivalent (in a specified sense) real $4\times 4$ matrix is presented. As in the case of Möbius addition, this decomplexification proves useful, enabling the resulting real matrix to be generalized into a corresponding matrix parametrized by a real, $n$-dimensional Bloch gyrovector, for all $n\ge 2$. The applicability of the $n$-dimensional Bloch gyrovector with $n=3$ to QIC is well known. The problem as to whether the $n$-dimensional Bloch gyrovector with $n>3$ is applicable to QIC as well remains to be explored.
LA - eng
KW - quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces; quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces
UR - http://eudml.org/doc/250484
ER -
References
top- Ahlfors L.V., Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl0272.30012MR0357743
- Altepeter J.B., James D.F.V., Kwiat P.G., 10.1007/978-3-540-44481-7_4, in Quantum State Estimation, Lecture Notes in Phys., vol. 649, Springer, Berlin, 2004, pp.113-145. Zbl1092.81511MR2180163DOI10.1007/978-3-540-44481-7_4
- Arvind, Mallesh K.S., Mukunda N., 10.1088/0305-4470/30/7/021, J. Phys. A 30 7 2417-2431 (1997). (1997) MR1457387DOI10.1088/0305-4470/30/7/021
- Chen J.-L., Ungar A.A., 10.1023/A:1015032332156, Found. Phys. 32 4 531-565 (2002). (2002) MR1903786DOI10.1023/A:1015032332156
- Chruściński D., Jamiołkowski A., Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics, vol. 36, Birkhäuser Boston Inc., Boston, MA, 2004.
- Feder T., 10.1016/S0021-8693(02)00536-7, J. Algebra 259 1 177-190 (2003). (2003) Zbl1019.20031MR1953714DOI10.1016/S0021-8693(02)00536-7
- Fisher S.D., Complex Variables, corrected reprint of the second (1990) edition, Dover Publications Inc., Mineola, NY, 1999. Zbl1079.30500MR1702283
- Foguel T., Ungar A.A., 10.1515/jgth.2000.003, J. Group Theory 3 1 27-46 (2000). (2000) Zbl0944.20053MR1736515DOI10.1515/jgth.2000.003
- Foguel T., Ungar A.A., 10.2140/pjm.2001.197.1, Pacific J. Math 197 1 1-11 (2001). (2001) Zbl1066.20068MR1810204DOI10.2140/pjm.2001.197.1
- Greene R.E., Krantz S.G., Function Theory of One Complex Variable, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1997. Zbl1114.30001MR1443431
- Hausner M., A Vector Space Approach to Geometry, reprint of the 1965 original, Dover Publications Inc., Mineola, NY, 1998. Zbl0924.51001MR1651732
- James D.F.V., Kwiat P.G., Munro W.J., White A.G., Volume of the set of separable states, Phys. Rev. A (3) 58 2 883-892 (1998). (1998)
- Kinyon M.K., Ungar A.A., 10.2307/2690974, Math. Mag. 73 4 273-284 (2000). (2000) MR1822756DOI10.2307/2690974
- Korányi A., 10.2307/2695525, Amer. Math. Monthly 108 2 120-125 (2001). (2001) Zbl1012.15007MR1818185DOI10.2307/2695525
- Lévay P., 10.1088/0305-4470/37/5/024, J. Phys. A 37 5 1821-1841 (2004). (2004) Zbl1067.81049MR2044194DOI10.1088/0305-4470/37/5/024
- Lévay P., 10.1088/0305-4470/37/16/009, J. Phys. A 37 16 4593-4605 (2004). (2004) Zbl1062.81067MR2065947DOI10.1088/0305-4470/37/16/009
- Marsden J.E., Elementary Classical Analysis. With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver; W.H. Freeman and Co., San Francisco, 1974, . MR0357693
- Needham T., Visual Complex Analysis, The Clarendon Press, Oxford University Press, New York, 1997. Zbl1095.30500MR1446490
- Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000. Zbl1049.81015MR1796805
- Ungar A.A., Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, Fundamental Theories of Physics, vol. 117, Kluwer Academic Publishers Group, Dordrecht, 2001. Zbl0972.83002MR1978122
- Ungar A.A., The density matrix for mixed state qubits and hyperbolic geometry, Quantum Inf. Comput. 2 6 513-514 (2002). (2002) Zbl1152.81823MR1945452
- Ungar A.A., 10.1023/A:1021446605657, Found. Phys. 32 11 1671-1699 2002. MR1954912DOI10.1023/A:1021446605657
- Ungar A.A., Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl1089.51003MR2169236
- Ungar A.A., Gyrogroups, the grouplike loops in the service of hyperbolic geometry and Einstein's special theory of relativity, Quasigroups Related Systems 15 141-168 (2007). (2007) Zbl1147.20055MR2379129
- Ungar A.A., The hyperbolic square and Möbius transformations, Banach J. Math. Anal. 1 1 101-116 (2007). (2007) Zbl1129.30027MR2350199
- Ungar A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl1147.83004MR2169236
- Ungar A.A., From Möbius to gyrogroups, Amer. Math. Monthly 115 2 138-144 (2008). (2008) Zbl1152.30045MR2384266
- Urbantke H., 10.1119/1.16809, Amer. J. Phys. 59 6 503-509 (1991). (1991) DOI10.1119/1.16809
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.