Möbius gyrovector spaces in quantum information and computation
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 341-356
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ahlfors L.V., Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl0272.30012MR0357743
- Altepeter J.B., James D.F.V., Kwiat P.G., 10.1007/978-3-540-44481-7_4, in Quantum State Estimation, Lecture Notes in Phys., vol. 649, Springer, Berlin, 2004, pp.113-145. Zbl1092.81511MR2180163DOI10.1007/978-3-540-44481-7_4
- Arvind, Mallesh K.S., Mukunda N., 10.1088/0305-4470/30/7/021, J. Phys. A 30 7 2417-2431 (1997). (1997) MR1457387DOI10.1088/0305-4470/30/7/021
- Chen J.-L., Ungar A.A., 10.1023/A:1015032332156, Found. Phys. 32 4 531-565 (2002). (2002) MR1903786DOI10.1023/A:1015032332156
- Chruściński D., Jamiołkowski A., Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics, vol. 36, Birkhäuser Boston Inc., Boston, MA, 2004.
- Feder T., 10.1016/S0021-8693(02)00536-7, J. Algebra 259 1 177-190 (2003). (2003) Zbl1019.20031MR1953714DOI10.1016/S0021-8693(02)00536-7
- Fisher S.D., Complex Variables, corrected reprint of the second (1990) edition, Dover Publications Inc., Mineola, NY, 1999. Zbl1079.30500MR1702283
- Foguel T., Ungar A.A., 10.1515/jgth.2000.003, J. Group Theory 3 1 27-46 (2000). (2000) Zbl0944.20053MR1736515DOI10.1515/jgth.2000.003
- Foguel T., Ungar A.A., 10.2140/pjm.2001.197.1, Pacific J. Math 197 1 1-11 (2001). (2001) Zbl1066.20068MR1810204DOI10.2140/pjm.2001.197.1
- Greene R.E., Krantz S.G., Function Theory of One Complex Variable, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1997. Zbl1114.30001MR1443431
- Hausner M., A Vector Space Approach to Geometry, reprint of the 1965 original, Dover Publications Inc., Mineola, NY, 1998. Zbl0924.51001MR1651732
- James D.F.V., Kwiat P.G., Munro W.J., White A.G., Volume of the set of separable states, Phys. Rev. A (3) 58 2 883-892 (1998). (1998)
- Kinyon M.K., Ungar A.A., 10.2307/2690974, Math. Mag. 73 4 273-284 (2000). (2000) MR1822756DOI10.2307/2690974
- Korányi A., 10.2307/2695525, Amer. Math. Monthly 108 2 120-125 (2001). (2001) Zbl1012.15007MR1818185DOI10.2307/2695525
- Lévay P., 10.1088/0305-4470/37/5/024, J. Phys. A 37 5 1821-1841 (2004). (2004) Zbl1067.81049MR2044194DOI10.1088/0305-4470/37/5/024
- Lévay P., 10.1088/0305-4470/37/16/009, J. Phys. A 37 16 4593-4605 (2004). (2004) Zbl1062.81067MR2065947DOI10.1088/0305-4470/37/16/009
- Marsden J.E., Elementary Classical Analysis. With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver; W.H. Freeman and Co., San Francisco, 1974, . MR0357693
- Needham T., Visual Complex Analysis, The Clarendon Press, Oxford University Press, New York, 1997. Zbl1095.30500MR1446490
- Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000. Zbl1049.81015MR1796805
- Ungar A.A., Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, Fundamental Theories of Physics, vol. 117, Kluwer Academic Publishers Group, Dordrecht, 2001. Zbl0972.83002MR1978122
- Ungar A.A., The density matrix for mixed state qubits and hyperbolic geometry, Quantum Inf. Comput. 2 6 513-514 (2002). (2002) Zbl1152.81823MR1945452
- Ungar A.A., 10.1023/A:1021446605657, Found. Phys. 32 11 1671-1699 2002. MR1954912DOI10.1023/A:1021446605657
- Ungar A.A., Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl1089.51003MR2169236
- Ungar A.A., Gyrogroups, the grouplike loops in the service of hyperbolic geometry and Einstein's special theory of relativity, Quasigroups Related Systems 15 141-168 (2007). (2007) Zbl1147.20055MR2379129
- Ungar A.A., The hyperbolic square and Möbius transformations, Banach J. Math. Anal. 1 1 101-116 (2007). (2007) Zbl1129.30027MR2350199
- Ungar A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl1147.83004MR2169236
- Ungar A.A., From Möbius to gyrogroups, Amer. Math. Monthly 115 2 138-144 (2008). (2008) Zbl1152.30045MR2384266
- Urbantke H., 10.1119/1.16809, Amer. J. Phys. 59 6 503-509 (1991). (1991) DOI10.1119/1.16809