Ternary quasigroups and the modular group

Jonathan D. H. Smith

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 2, page 309-317
  • ISSN: 0010-2628

Abstract

top
For a positive integer n , the usual definitions of n -quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin n -cubes, or by 2 n identities on n + 1 different n -ary operations. In this paper, a more symmetrical approach to the specification of n -quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.

How to cite

top

Smith, Jonathan D. H.. "Ternary quasigroups and the modular group." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 309-317. <http://eudml.org/doc/250486>.

@article{Smith2008,
abstract = {For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.},
author = {Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal; quasigroups; -quasigroups; modular group; conjugates; -ary quasigroups; hyperquasigroups; identities},
language = {eng},
number = {2},
pages = {309-317},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ternary quasigroups and the modular group},
url = {http://eudml.org/doc/250486},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Smith, Jonathan D. H.
TI - Ternary quasigroups and the modular group
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 309
EP - 317
AB - For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
LA - eng
KW - quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal; quasigroups; -quasigroups; modular group; conjugates; -ary quasigroups; hyperquasigroups; identities
UR - http://eudml.org/doc/250486
ER -

References

top
  1. Chein O. et al., Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. Zbl0719.20036MR1125806
  2. Coxeter H.S.M., Moser W.O.J., Generators and Relations for Discrete Groups, Springer, Berlin, 1957. Zbl0487.20023MR0088489
  3. Evans T., 10.1112/jlms/s1-24.4.254, J. London Math. Soc. 24 (1949), 254-260. (1949) MR0032664DOI10.1112/jlms/s1-24.4.254
  4. Higgins P.J., 10.1002/mana.19630270108, Math. Nachr. 27 (1963), 115-132. (1963) Zbl0117.25903MR0163940DOI10.1002/mana.19630270108
  5. James I.M., Quasigroups and topology, Math. Z. 84 (1964), 329-342. (1964) Zbl0124.16104MR0165524
  6. Lugowski H., Grundzüge der Universellen Algebra, Teubner, Leipzig, 1976. Zbl0485.08001MR0441819
  7. Sade A., Quasigroupes obéissant à certaines lois, Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151-184. (1957) MR0106253
  8. Serre, J.-P., Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970. Zbl0432.10001MR0255476
  9. Smith J.D.H., 10.7151/dmgaa.1116, Discuss. Math. Gen. Algebra Appl. 27 (2007), 21-33. (2007) Zbl1135.20048MR2319330DOI10.7151/dmgaa.1116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.