Ternary quasigroups and the modular group
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 309-317
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSmith, Jonathan D. H.. "Ternary quasigroups and the modular group." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 309-317. <http://eudml.org/doc/250486>.
@article{Smith2008,
abstract = {For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.},
author = {Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal; quasigroups; -quasigroups; modular group; conjugates; -ary quasigroups; hyperquasigroups; identities},
language = {eng},
number = {2},
pages = {309-317},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ternary quasigroups and the modular group},
url = {http://eudml.org/doc/250486},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Smith, Jonathan D. H.
TI - Ternary quasigroups and the modular group
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 309
EP - 317
AB - For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
LA - eng
KW - quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal; quasigroups; -quasigroups; modular group; conjugates; -ary quasigroups; hyperquasigroups; identities
UR - http://eudml.org/doc/250486
ER -
References
top- Chein O. et al., Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. Zbl0719.20036MR1125806
- Coxeter H.S.M., Moser W.O.J., Generators and Relations for Discrete Groups, Springer, Berlin, 1957. Zbl0487.20023MR0088489
- Evans T., 10.1112/jlms/s1-24.4.254, J. London Math. Soc. 24 (1949), 254-260. (1949) MR0032664DOI10.1112/jlms/s1-24.4.254
- Higgins P.J., 10.1002/mana.19630270108, Math. Nachr. 27 (1963), 115-132. (1963) Zbl0117.25903MR0163940DOI10.1002/mana.19630270108
- James I.M., Quasigroups and topology, Math. Z. 84 (1964), 329-342. (1964) Zbl0124.16104MR0165524
- Lugowski H., Grundzüge der Universellen Algebra, Teubner, Leipzig, 1976. Zbl0485.08001MR0441819
- Sade A., Quasigroupes obéissant à certaines lois, Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151-184. (1957) MR0106253
- Serre, J.-P., Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970. Zbl0432.10001MR0255476
- Smith J.D.H., 10.7151/dmgaa.1116, Discuss. Math. Gen. Algebra Appl. 27 (2007), 21-33. (2007) Zbl1135.20048MR2319330DOI10.7151/dmgaa.1116
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.