On approximation of functions by certain operators preserving
Lucyna Rempulska; Karolina Tomczak
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 4, page 579-593
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957), 249-251. (1957) MR0094640
- Becker M., 10.1512/iumj.1978.27.27011, Indiana Univ. Math. J. 27 1 (1978), 127-142. (1978) MR0493079DOI10.1512/iumj.1978.27.27011
- De Vore R.A., The Approximation of Continuous Functions by Positive Linear Operators, Springer, Berlin, New York, 1972. MR0420083
- De Vore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin, New York, 1993. MR1261635
- Ditzian Z., Totik V., Moduli of Smoothness, Springer, New York, 1987. Zbl0715.46043MR0914149
- Duman O., Özarslan M.A., 10.4153/CMB-2007-042-8, Canad. Math. Bull. 50 (2007), 434-439. (2007) Zbl1132.41318MR2344178DOI10.4153/CMB-2007-042-8
- Duman O., Özarslan M.A., 10.1016/j.aml.2006.10.007, Appl. Math. Lett. 20 12 (2007), 1184-1188. (2007) MR2384243DOI10.1016/j.aml.2006.10.007
- King J.P., 10.1023/A:1024571126455, Acta Math. Hungar. 99 (2003), 203-208. (2003) Zbl1027.41028MR1973095DOI10.1023/A:1024571126455
- Kirov G.H., A generalization of the Bernstein polynomials, Math. Balcanica 2 2 (1992), 147-153. (1992) Zbl0838.41017MR1182946
- Kirov G.H., Popova L., A generalization of the linear positive operators, Math. Balcanica 7 2 (1993), 149-162. (1993) Zbl0833.41016MR1270375
- Rempulska L., Walczak Z., Modified Szász-Mirakyan operators, Math. Balcanica 18 (2004), 53-63. (2004) Zbl1079.41022MR2076077
- Rempulska L., Skorupka M., 10.1080/10652460701510527, Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. (2007) Zbl1148.41025MR2356794DOI10.1080/10652460701510527
- Rempulska L., Skorupka M., On approximation by Post-Widder and Stancu operators preserving , Kyung. Math. J., to appear. MR2527373
- Stancu D.D., On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. (1995) Zbl0856.41019MR1608424