On approximation of functions by certain operators preserving x 2

Lucyna Rempulska; Karolina Tomczak

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 4, page 579-593
  • ISSN: 0010-2628

Abstract

top
In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving e k ( x ) = x k , k = 0 , 2 . Using a modification of certain operators L n preserving e 0 and e 1 , we introduce operators L n * which preserve e 0 and e 2 and next we define operators L n ; r * for r -times differentiable functions. We show that L n * and L n ; r * have better approximation properties than L n and L n ; r .

How to cite

top

Rempulska, Lucyna, and Tomczak, Karolina. "On approximation of functions by certain operators preserving $x^2$." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 579-593. <http://eudml.org/doc/250487>.

@article{Rempulska2008,
abstract = {In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_\{n;r\}^\{*\}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_\{n;r\}^\{*\}$ have better approximation properties than $L_n$ and $L_\{n;r\}$.},
author = {Rempulska, Lucyna, Tomczak, Karolina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {positive linear operators; polynomial weighted space; degree of approximation; positive linear operators; polynomial weighted space; degree of approximation},
language = {eng},
number = {4},
pages = {579-593},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On approximation of functions by certain operators preserving $x^2$},
url = {http://eudml.org/doc/250487},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Rempulska, Lucyna
AU - Tomczak, Karolina
TI - On approximation of functions by certain operators preserving $x^2$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 579
EP - 593
AB - In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$.
LA - eng
KW - positive linear operators; polynomial weighted space; degree of approximation; positive linear operators; polynomial weighted space; degree of approximation
UR - http://eudml.org/doc/250487
ER -

References

top
  1. Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957), 249-251. (1957) MR0094640
  2. Becker M., 10.1512/iumj.1978.27.27011, Indiana Univ. Math. J. 27 1 (1978), 127-142. (1978) MR0493079DOI10.1512/iumj.1978.27.27011
  3. De Vore R.A., The Approximation of Continuous Functions by Positive Linear Operators, Springer, Berlin, New York, 1972. MR0420083
  4. De Vore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin, New York, 1993. MR1261635
  5. Ditzian Z., Totik V., Moduli of Smoothness, Springer, New York, 1987. Zbl0715.46043MR0914149
  6. Duman O., Özarslan M.A., 10.4153/CMB-2007-042-8, Canad. Math. Bull. 50 (2007), 434-439. (2007) Zbl1132.41318MR2344178DOI10.4153/CMB-2007-042-8
  7. Duman O., Özarslan M.A., 10.1016/j.aml.2006.10.007, Appl. Math. Lett. 20 12 (2007), 1184-1188. (2007) MR2384243DOI10.1016/j.aml.2006.10.007
  8. King J.P., 10.1023/A:1024571126455, Acta Math. Hungar. 99 (2003), 203-208. (2003) Zbl1027.41028MR1973095DOI10.1023/A:1024571126455
  9. Kirov G.H., A generalization of the Bernstein polynomials, Math. Balcanica 2 2 (1992), 147-153. (1992) Zbl0838.41017MR1182946
  10. Kirov G.H., Popova L., A generalization of the linear positive operators, Math. Balcanica 7 2 (1993), 149-162. (1993) Zbl0833.41016MR1270375
  11. Rempulska L., Walczak Z., Modified Szász-Mirakyan operators, Math. Balcanica 18 (2004), 53-63. (2004) Zbl1079.41022MR2076077
  12. Rempulska L., Skorupka M., 10.1080/10652460701510527, Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. (2007) Zbl1148.41025MR2356794DOI10.1080/10652460701510527
  13. Rempulska L., Skorupka M., On approximation by Post-Widder and Stancu operators preserving x 2 , Kyung. Math. J., to appear. MR2527373
  14. Stancu D.D., On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. (1995) Zbl0856.41019MR1608424

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.