On approximation of functions by certain operators preserving
Lucyna Rempulska; Karolina Tomczak
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 4, page 579-593
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRempulska, Lucyna, and Tomczak, Karolina. "On approximation of functions by certain operators preserving $x^2$." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 579-593. <http://eudml.org/doc/250487>.
@article{Rempulska2008,
abstract = {In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_\{n;r\}^\{*\}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_\{n;r\}^\{*\}$ have better approximation properties than $L_n$ and $L_\{n;r\}$.},
author = {Rempulska, Lucyna, Tomczak, Karolina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {positive linear operators; polynomial weighted space; degree of approximation; positive linear operators; polynomial weighted space; degree of approximation},
language = {eng},
number = {4},
pages = {579-593},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On approximation of functions by certain operators preserving $x^2$},
url = {http://eudml.org/doc/250487},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Rempulska, Lucyna
AU - Tomczak, Karolina
TI - On approximation of functions by certain operators preserving $x^2$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 579
EP - 593
AB - In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$.
LA - eng
KW - positive linear operators; polynomial weighted space; degree of approximation; positive linear operators; polynomial weighted space; degree of approximation
UR - http://eudml.org/doc/250487
ER -
References
top- Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957), 249-251. (1957) MR0094640
- Becker M., 10.1512/iumj.1978.27.27011, Indiana Univ. Math. J. 27 1 (1978), 127-142. (1978) MR0493079DOI10.1512/iumj.1978.27.27011
- De Vore R.A., The Approximation of Continuous Functions by Positive Linear Operators, Springer, Berlin, New York, 1972. MR0420083
- De Vore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin, New York, 1993. MR1261635
- Ditzian Z., Totik V., Moduli of Smoothness, Springer, New York, 1987. Zbl0715.46043MR0914149
- Duman O., Özarslan M.A., 10.4153/CMB-2007-042-8, Canad. Math. Bull. 50 (2007), 434-439. (2007) Zbl1132.41318MR2344178DOI10.4153/CMB-2007-042-8
- Duman O., Özarslan M.A., 10.1016/j.aml.2006.10.007, Appl. Math. Lett. 20 12 (2007), 1184-1188. (2007) MR2384243DOI10.1016/j.aml.2006.10.007
- King J.P., 10.1023/A:1024571126455, Acta Math. Hungar. 99 (2003), 203-208. (2003) Zbl1027.41028MR1973095DOI10.1023/A:1024571126455
- Kirov G.H., A generalization of the Bernstein polynomials, Math. Balcanica 2 2 (1992), 147-153. (1992) Zbl0838.41017MR1182946
- Kirov G.H., Popova L., A generalization of the linear positive operators, Math. Balcanica 7 2 (1993), 149-162. (1993) Zbl0833.41016MR1270375
- Rempulska L., Walczak Z., Modified Szász-Mirakyan operators, Math. Balcanica 18 (2004), 53-63. (2004) Zbl1079.41022MR2076077
- Rempulska L., Skorupka M., 10.1080/10652460701510527, Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. (2007) Zbl1148.41025MR2356794DOI10.1080/10652460701510527
- Rempulska L., Skorupka M., On approximation by Post-Widder and Stancu operators preserving , Kyung. Math. J., to appear. MR2527373
- Stancu D.D., On the beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. (1995) Zbl0856.41019MR1608424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.