A note on a theorem of Megibben
Peter Vassilev Danchev; Patrick Keef
Archivum Mathematicum (2008)
- Volume: 044, Issue: 3, page 245-249
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDanchev, Peter Vassilev, and Keef, Patrick. "A note on a theorem of Megibben." Archivum Mathematicum 044.3 (2008): 245-249. <http://eudml.org/doc/250491>.
@article{Danchev2008,
abstract = {We prove that pure subgroups of thick Abelian $p$-groups which are modulo countable are again thick. This generalizes a result due to Megibben (Michigan Math. J. 1966). Some related results are also established.},
author = {Danchev, Peter Vassilev, Keef, Patrick},
journal = {Archivum Mathematicum},
keywords = {thick groups; pure subgroups; countable extensions; divisible groups; bounded groups; thick Abelian -groups; pure subgroups; countable extensions; divisible groups; bounded groups; totally projective subgroups},
language = {eng},
number = {3},
pages = {245-249},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on a theorem of Megibben},
url = {http://eudml.org/doc/250491},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Danchev, Peter Vassilev
AU - Keef, Patrick
TI - A note on a theorem of Megibben
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 245
EP - 249
AB - We prove that pure subgroups of thick Abelian $p$-groups which are modulo countable are again thick. This generalizes a result due to Megibben (Michigan Math. J. 1966). Some related results are also established.
LA - eng
KW - thick groups; pure subgroups; countable extensions; divisible groups; bounded groups; thick Abelian -groups; pure subgroups; countable extensions; divisible groups; bounded groups; totally projective subgroups
UR - http://eudml.org/doc/250491
ER -
References
top- Benabdallah, K., Wilson, R., 10.4153/CJM-1978-056-9, Canad. J. Math. 30 (3) (1978), 650–654. (1978) Zbl0399.20049MR0492006DOI10.4153/CJM-1978-056-9
- Danchev, P. V., Commutative group algebras of thick abelian -groups, Indian J. Pure Appl. Math. 36 (6) (2005), 319–328. (2005) Zbl1088.20001MR2178344
- Danchev, P. V., 10.4171/PM/1802, Portugal. Math. 65 (1) (2008), 121–142. (2008) Zbl1146.20034MR2387091DOI10.4171/PM/1802
- Danchev, P. V., Keef, P. W., Generalized Wallace theorems, Math. Scand., to appear. MR2498370
- Keef, P. W., 10.1080/00927879508825421, Commun. Algebra 23 (10) (1995), 3615–3626. (1995) Zbl0835.20072MR1348253DOI10.1080/00927879508825421
- Megibben, C. K., 10.1307/mmj/1028999539, Michigan Math. J. 13 (2) (1966), 153–160. (1966) Zbl0166.02502MR0195939DOI10.1307/mmj/1028999539
- Nunke, R. J., 10.1007/BF01135839, Math. Z. 101 (3) (1967), 182–212. (1967) Zbl0173.02401MR0218452DOI10.1007/BF01135839
- Pierce, R. S., Homomorphisms of Primary Abelian Groups, Topics in Abelian Groups, (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Illinois, 1963, pp. 215–310. (1963) MR0177035
- Wallace, K. D., 10.1016/0021-8693(71)90005-6, J. Algebra 17 (4) (1971), 482–488. (1971) Zbl0215.39902MR0272891DOI10.1016/0021-8693(71)90005-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.