Left APP-property of formal power series rings
Archivum Mathematicum (2008)
- Volume: 044, Issue: 3, page 185-189
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLiu, Zhongkui, and Yang, Xiao Yan. "Left APP-property of formal power series rings." Archivum Mathematicum 044.3 (2008): 185-189. <http://eudml.org/doc/250493>.
@article{Liu2008,
abstract = {A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$$\big (\sum _\{j=0\}^\{\infty \}\sum _\{k=0\}^\{\infty \}R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.},
author = {Liu, Zhongkui, Yang, Xiao Yan},
journal = {Archivum Mathematicum},
keywords = {left APP-ring; skew power series ring; left principally quasi-Baer ring; left APP-rings; skew power series rings; left principally quasi-Baer rings; descending chain condition on right annihilators},
language = {eng},
number = {3},
pages = {185-189},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Left APP-property of formal power series rings},
url = {http://eudml.org/doc/250493},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Liu, Zhongkui
AU - Yang, Xiao Yan
TI - Left APP-property of formal power series rings
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 185
EP - 189
AB - A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$$\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.
LA - eng
KW - left APP-ring; skew power series ring; left principally quasi-Baer ring; left APP-rings; skew power series rings; left principally quasi-Baer rings; descending chain condition on right annihilators
UR - http://eudml.org/doc/250493
ER -
References
top- Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1016/S0022-4049(99)00164-4, J. Pure Appl. Algebra 146 (2000), 209–223. (2000) Zbl0947.16018MR1742340DOI10.1016/S0022-4049(99)00164-4
- Birkenmeier, G. F., Kim, J. Y., Park, J. K., On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–254. (2000) Zbl0987.16017MR1803098
- Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1090/conm/259/04088, Contemp. Math. 259 (2000), 67–92. (2000) Zbl0974.16006MR1778495DOI10.1090/conm/259/04088
- Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1081/AGB-100001530, Comm. Algebra 29 (2001), 639–660. (2001) Zbl0991.16005MR1841988DOI10.1081/AGB-100001530
- Fraser, J. A., Nicholson, W. K., Reduced PP-rings, Math. Japon. 34 (1989), 715–725. (1989) Zbl0688.16024MR1022149
- Hirano, Y., 10.1016/S0022-4049(01)00053-6, J. Pure Appl. Algebra 168 (2002), 45–52. (2002) Zbl1007.16020MR1879930DOI10.1016/S0022-4049(01)00053-6
- Liu, Z., 10.1081/AGB-120005825, Comm. Algebra 30 (2002), 3885–3890. (2002) Zbl1018.16023MR1922317DOI10.1081/AGB-120005825
- Liu, Z., Ahsan, J., PP-rings of generalized power series, Acta Math. Sinica 16 (2000), 573–578, English Series. (2000) Zbl1015.16046MR1813453
- Liu, Z., Zhao, R., 10.1017/S0017089506003016, Glasgow Math. J. 48 (2006), 217–229. (2006) Zbl1110.16003MR2256973DOI10.1017/S0017089506003016
- Stenström, B., Rings of Quotients, Springer-Verlag, Berlin, 1975. (1975) MR0389953
- Tominaga, H., On -unital rings, Math. J. Okayama Univ. 18 (1976), 117–134. (1976) Zbl0335.16020MR0419511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.