Left APP-property of formal power series rings

Zhongkui Liu; Xiao Yan Yang

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 3, page 185-189
  • ISSN: 0044-8753

Abstract

top
A ring R is called a left APP-ring if the left annihilator l R ( R a ) is right s -unital as an ideal of R for any element a R . We consider left APP-property of the skew formal power series ring R [ [ x ; α ] ] where α is a ring automorphism of R . It is shown that if R is a ring satisfying descending chain condition on right annihilators then R [ [ x ; α ] ] is left APP if and only if for any sequence ( b 0 , b 1 , ) of elements of R the ideal l R ( j = 0 k = 0 R α k ( b j ) ) is right s -unital. As an application we give a sufficient condition under which the ring R [ [ x ] ] over a left APP-ring R is left APP.

How to cite

top

Liu, Zhongkui, and Yang, Xiao Yan. "Left APP-property of formal power series rings." Archivum Mathematicum 044.3 (2008): 185-189. <http://eudml.org/doc/250493>.

@article{Liu2008,
abstract = {A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$$\big (\sum _\{j=0\}^\{\infty \}\sum _\{k=0\}^\{\infty \}R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.},
author = {Liu, Zhongkui, Yang, Xiao Yan},
journal = {Archivum Mathematicum},
keywords = {left APP-ring; skew power series ring; left principally quasi-Baer ring; left APP-rings; skew power series rings; left principally quasi-Baer rings; descending chain condition on right annihilators},
language = {eng},
number = {3},
pages = {185-189},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Left APP-property of formal power series rings},
url = {http://eudml.org/doc/250493},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Liu, Zhongkui
AU - Yang, Xiao Yan
TI - Left APP-property of formal power series rings
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 185
EP - 189
AB - A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$$\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.
LA - eng
KW - left APP-ring; skew power series ring; left principally quasi-Baer ring; left APP-rings; skew power series rings; left principally quasi-Baer rings; descending chain condition on right annihilators
UR - http://eudml.org/doc/250493
ER -

References

top
  1. Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1016/S0022-4049(99)00164-4, J. Pure Appl. Algebra 146 (2000), 209–223. (2000) Zbl0947.16018MR1742340DOI10.1016/S0022-4049(99)00164-4
  2. Birkenmeier, G. F., Kim, J. Y., Park, J. K., On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–254. (2000) Zbl0987.16017MR1803098
  3. Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1090/conm/259/04088, Contemp. Math. 259 (2000), 67–92. (2000) Zbl0974.16006MR1778495DOI10.1090/conm/259/04088
  4. Birkenmeier, G. F., Kim, J. Y., Park, J. K., 10.1081/AGB-100001530, Comm. Algebra 29 (2001), 639–660. (2001) Zbl0991.16005MR1841988DOI10.1081/AGB-100001530
  5. Fraser, J. A., Nicholson, W. K., Reduced PP-rings, Math. Japon. 34 (1989), 715–725. (1989) Zbl0688.16024MR1022149
  6. Hirano, Y., 10.1016/S0022-4049(01)00053-6, J. Pure Appl. Algebra 168 (2002), 45–52. (2002) Zbl1007.16020MR1879930DOI10.1016/S0022-4049(01)00053-6
  7. Liu, Z., 10.1081/AGB-120005825, Comm. Algebra 30 (2002), 3885–3890. (2002) Zbl1018.16023MR1922317DOI10.1081/AGB-120005825
  8. Liu, Z., Ahsan, J., PP-rings of generalized power series, Acta Math. Sinica 16 (2000), 573–578, English Series. (2000) Zbl1015.16046MR1813453
  9. Liu, Z., Zhao, R., 10.1017/S0017089506003016, Glasgow Math. J. 48 (2006), 217–229. (2006) Zbl1110.16003MR2256973DOI10.1017/S0017089506003016
  10. Stenström, B., Rings of Quotients, Springer-Verlag, Berlin, 1975. (1975) MR0389953
  11. Tominaga, H., On s -unital rings, Math. J. Okayama Univ. 18 (1976), 117–134. (1976) Zbl0335.16020MR0419511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.