A scoop from groups: equational foundations for loops

Phillips, J. D.; Petr Vojtěchovský

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 2, page 279-290
  • ISSN: 0010-2628

Abstract

top
Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided.

How to cite

top

Phillips, J. D., and Vojtěchovský, Petr. "A scoop from groups: equational foundations for loops." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 279-290. <http://eudml.org/doc/250498>.

@article{Phillips2008,
abstract = {Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided.},
author = {Phillips, J. D., Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse property loop; Bol loop; Moufang loop; C-loop; equational basis; magma with inverses; axioms; varieties of loops; inverse property loops; Bol loops; Moufang loops; C-loops; equational bases; magmas with inverses},
language = {eng},
number = {2},
pages = {279-290},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A scoop from groups: equational foundations for loops},
url = {http://eudml.org/doc/250498},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Phillips, J. D.
AU - Vojtěchovský, Petr
TI - A scoop from groups: equational foundations for loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 279
EP - 290
AB - Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided.
LA - eng
KW - inverse property loop; Bol loop; Moufang loop; C-loop; equational basis; magma with inverses; axioms; varieties of loops; inverse property loops; Bol loops; Moufang loops; C-loops; equational bases; magmas with inverses
UR - http://eudml.org/doc/250498
ER -

References

top
  1. Bates G.E., Kiokemeister F., 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180-1185. (1948) Zbl0034.29801MR0027768DOI10.1090/S0002-9904-1948-09146-7
  2. Bruck R.H., A Survey of Binary Systems, third printing, corrected, Ergebnisse der Mathematik und ihrer Grenzgebiete, New Series 20, Springer, Berlin, 1971. MR0093552
  3. Colbourn C.J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
  4. Conway J.H., 10.1007/BF01388521, Invent. Math. 79 (1985), 513-540. (1985) Zbl0564.20010MR0782233DOI10.1007/BF01388521
  5. Dénes J., Keedwell A.D., Latin Squares and their Applications, Akadémiai Kiadó, Budapest, 1974. MR0351850
  6. Doro S., 10.1017/S0305004100054669, Math. Proc. Cambridge Philos. Soc. 83 (1978), 377-392. (1978) Zbl0381.20054MR0492031DOI10.1017/S0305004100054669
  7. Evans T., 10.1112/jlms/s1-24.4.254, J. London Math. Soc. 24 (1949), 254-260. (1949) MR0032664DOI10.1112/jlms/s1-24.4.254
  8. Fenyves F., Extra loops II. On loops with identities of Bol-Moufang type, Publ. Math. Debrecen 16 (1969), 187-192. (1969) MR0262409
  9. Hall M., The Theory of Groups, The Macmillan Co., New York, 1959. Zbl0919.20001MR0103215
  10. Goodaire E.G., Jespers E., Polcino Milies C., Alternative Loop Rings, North-Holland Mathematics Studies 184, North-Holland Publishing Co., Amsterdam, 1996. Zbl0878.17029MR1433590
  11. Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
  12. Kinyon M.K., Phillips J.D., Vojtěchovský P., 10.1142/S0219498807001990, J. Algebra Appl. 6 (2007), 1 1-20. (2007) Zbl1129.20043MR2302693DOI10.1142/S0219498807001990
  13. Kunen K., 10.1006/jabr.1996.0321, J. Algebra 185 (1996), 1 194-204. (1996) Zbl0860.20053MR1409983DOI10.1006/jabr.1996.0321
  14. Mann H.B., 10.1090/S0002-9904-1944-08256-6, Bull. Amer. Math. Soc. 50 (1944), 879-881. (1944) Zbl0063.03769MR0011313DOI10.1090/S0002-9904-1944-08256-6
  15. McCune W.W., Prover9 and Mace, download at http://www.prover9.org, . 
  16. Nagy G.P., A class of proper simple Bol loops, submitted, available at arXiv:math/0703919. 
  17. Ormes N., Vojtěchovský P., Powers and alternative laws, Comment. Math. Univ. Carolin. 48 1 (2007), 25-40. (2007) Zbl1174.20343MR2338827
  18. Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
  19. Pflugfelder H.O, Historical notes on loop theory, Comment. Math. Univ. Carolin. 41 2 (2000), 359-370. (2000) Zbl1037.01010MR1780877
  20. Phillips J.D., Vojtěchovský P., C-loops: An introduction, Publ. Math. Debrecen 2006 1-2 115-137. MR2213546
  21. Phillips J.D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), 3 259-271. (2005) Zbl1102.20054MR2219409DOI10.1007/s00012-005-1941-1
  22. Phillips J.D., Vojtěchovský P., 10.1016/j.jalgebra.2005.07.011, J. Algebra 293 (2005), 17-33. (2005) Zbl1101.20046MR2173964DOI10.1016/j.jalgebra.2005.07.011
  23. 10.2307/3647897, American Mathematical Monthly 110, no. 4 (April 2003), 347. DOI10.2307/3647897
  24. Robinson D.A., 10.1090/S0002-9947-1966-0194545-4, Trans. Amer. Math. Soc. 123 (1966), 341-354. (1966) Zbl0163.02001MR0194545DOI10.1090/S0002-9947-1966-0194545-4
  25. Schafer R.D., An Introduction to Nonassociative Algebras, Pure and Applied Mathematics 22, Academic Press, New York-London, 1966. Zbl0145.25601MR0210757
  26. Sharma B.L., 10.1090/S0002-9939-1976-0422480-4, Proc. Amer. Math. Soc. 61 (1976), 2 189-195. (1976) MR0422480DOI10.1090/S0002-9939-1976-0422480-4
  27. Sharma B.L., Left loops which satisfy the left Bol identity II, Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), 2 69-78. (1977) Zbl0385.20044MR0444826
  28. Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl1087.17001MR1763974
  29. Smith W.D., Inclusions among diassociativity-related loop properties, preprint. 
  30. Tits J., Weiss R.M., Moufang polygons, Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl1010.20017MR1938841
  31. Ungar A.A., Beyond Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. MR1978122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.