A scoop from groups: equational foundations for loops
Phillips, J. D.; Petr Vojtěchovský
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 279-290
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPhillips, J. D., and Vojtěchovský, Petr. "A scoop from groups: equational foundations for loops." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 279-290. <http://eudml.org/doc/250498>.
@article{Phillips2008,
abstract = {Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided.},
author = {Phillips, J. D., Vojtěchovský, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse property loop; Bol loop; Moufang loop; C-loop; equational basis; magma with inverses; axioms; varieties of loops; inverse property loops; Bol loops; Moufang loops; C-loops; equational bases; magmas with inverses},
language = {eng},
number = {2},
pages = {279-290},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A scoop from groups: equational foundations for loops},
url = {http://eudml.org/doc/250498},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Phillips, J. D.
AU - Vojtěchovský, Petr
TI - A scoop from groups: equational foundations for loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 279
EP - 290
AB - Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided and/or the neutral element is only one-sided.
LA - eng
KW - inverse property loop; Bol loop; Moufang loop; C-loop; equational basis; magma with inverses; axioms; varieties of loops; inverse property loops; Bol loops; Moufang loops; C-loops; equational bases; magmas with inverses
UR - http://eudml.org/doc/250498
ER -
References
top- Bates G.E., Kiokemeister F., 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180-1185. (1948) Zbl0034.29801MR0027768DOI10.1090/S0002-9904-1948-09146-7
- Bruck R.H., A Survey of Binary Systems, third printing, corrected, Ergebnisse der Mathematik und ihrer Grenzgebiete, New Series 20, Springer, Berlin, 1971. MR0093552
- Colbourn C.J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
- Conway J.H., 10.1007/BF01388521, Invent. Math. 79 (1985), 513-540. (1985) Zbl0564.20010MR0782233DOI10.1007/BF01388521
- Dénes J., Keedwell A.D., Latin Squares and their Applications, Akadémiai Kiadó, Budapest, 1974. MR0351850
- Doro S., 10.1017/S0305004100054669, Math. Proc. Cambridge Philos. Soc. 83 (1978), 377-392. (1978) Zbl0381.20054MR0492031DOI10.1017/S0305004100054669
- Evans T., 10.1112/jlms/s1-24.4.254, J. London Math. Soc. 24 (1949), 254-260. (1949) MR0032664DOI10.1112/jlms/s1-24.4.254
- Fenyves F., Extra loops II. On loops with identities of Bol-Moufang type, Publ. Math. Debrecen 16 (1969), 187-192. (1969) MR0262409
- Hall M., The Theory of Groups, The Macmillan Co., New York, 1959. Zbl0919.20001MR0103215
- Goodaire E.G., Jespers E., Polcino Milies C., Alternative Loop Rings, North-Holland Mathematics Studies 184, North-Holland Publishing Co., Amsterdam, 1996. Zbl0878.17029MR1433590
- Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
- Kinyon M.K., Phillips J.D., Vojtěchovský P., 10.1142/S0219498807001990, J. Algebra Appl. 6 (2007), 1 1-20. (2007) Zbl1129.20043MR2302693DOI10.1142/S0219498807001990
- Kunen K., 10.1006/jabr.1996.0321, J. Algebra 185 (1996), 1 194-204. (1996) Zbl0860.20053MR1409983DOI10.1006/jabr.1996.0321
- Mann H.B., 10.1090/S0002-9904-1944-08256-6, Bull. Amer. Math. Soc. 50 (1944), 879-881. (1944) Zbl0063.03769MR0011313DOI10.1090/S0002-9904-1944-08256-6
- McCune W.W., Prover9 and Mace, download at http://www.prover9.org, .
- Nagy G.P., A class of proper simple Bol loops, submitted, available at arXiv:math/0703919.
- Ormes N., Vojtěchovský P., Powers and alternative laws, Comment. Math. Univ. Carolin. 48 1 (2007), 25-40. (2007) Zbl1174.20343MR2338827
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Pflugfelder H.O, Historical notes on loop theory, Comment. Math. Univ. Carolin. 41 2 (2000), 359-370. (2000) Zbl1037.01010MR1780877
- Phillips J.D., Vojtěchovský P., C-loops: An introduction, Publ. Math. Debrecen 2006 1-2 115-137. MR2213546
- Phillips J.D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), 3 259-271. (2005) Zbl1102.20054MR2219409DOI10.1007/s00012-005-1941-1
- Phillips J.D., Vojtěchovský P., 10.1016/j.jalgebra.2005.07.011, J. Algebra 293 (2005), 17-33. (2005) Zbl1101.20046MR2173964DOI10.1016/j.jalgebra.2005.07.011
- 10.2307/3647897, American Mathematical Monthly 110, no. 4 (April 2003), 347. DOI10.2307/3647897
- Robinson D.A., 10.1090/S0002-9947-1966-0194545-4, Trans. Amer. Math. Soc. 123 (1966), 341-354. (1966) Zbl0163.02001MR0194545DOI10.1090/S0002-9947-1966-0194545-4
- Schafer R.D., An Introduction to Nonassociative Algebras, Pure and Applied Mathematics 22, Academic Press, New York-London, 1966. Zbl0145.25601MR0210757
- Sharma B.L., 10.1090/S0002-9939-1976-0422480-4, Proc. Amer. Math. Soc. 61 (1976), 2 189-195. (1976) MR0422480DOI10.1090/S0002-9939-1976-0422480-4
- Sharma B.L., Left loops which satisfy the left Bol identity II, Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), 2 69-78. (1977) Zbl0385.20044MR0444826
- Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl1087.17001MR1763974
- Smith W.D., Inclusions among diassociativity-related loop properties, preprint.
- Tits J., Weiss R.M., Moufang polygons, Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl1010.20017MR1938841
- Ungar A.A., Beyond Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. MR1978122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.