A new approach for describing instantaneous line congruence
Rashad A. Abdel-Baky; Ashwaq J. Al-Bokhary
Archivum Mathematicum (2008)
- Volume: 044, Issue: 3, page 223-236
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAbdel-Baky, Rashad A., and Al-Bokhary, Ashwaq J.. "A new approach for describing instantaneous line congruence." Archivum Mathematicum 044.3 (2008): 223-236. <http://eudml.org/doc/250499>.
@article{Abdel2008,
abstract = {Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.},
author = {Abdel-Baky, Rashad A., Al-Bokhary, Ashwaq J.},
journal = {Archivum Mathematicum},
keywords = {lines of curvature; line congruence; E. Study’s map; instantaneous revolution axis; lines of curvature; line congruence; E. Study's map; instantaneous revolution axis},
language = {eng},
number = {3},
pages = {223-236},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A new approach for describing instantaneous line congruence},
url = {http://eudml.org/doc/250499},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Abdel-Baky, Rashad A.
AU - Al-Bokhary, Ashwaq J.
TI - A new approach for describing instantaneous line congruence
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 3
SP - 223
EP - 236
AB - Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.
LA - eng
KW - lines of curvature; line congruence; E. Study’s map; instantaneous revolution axis; lines of curvature; line congruence; E. Study's map; instantaneous revolution axis
UR - http://eudml.org/doc/250499
ER -
References
top- Abdel-Baky, R. A., On the congruences of the tangents to a surface, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. (1999) Zbl1017.53003MR1908813
- Abdel-Baky, R. A., On instantaneous rectilinear congruences, J. Geom. Graph. 7 (2) (2003), 129–135. (2003) Zbl1066.53036MR2071274
- Abdel Baky, R. A., Inflection and torsion line congruences, J. Geom. Graph. 11 (1) (2004), 1–14. (2004) MR2364050
- Abdel-Baky, R. A., 10.1016/S0096-3003(03)00541-1, Appl. Math. Comput. 151 (2004), 849–862. (2004) Zbl1058.53010MR2052463DOI10.1016/S0096-3003(03)00541-1
- Blaschke, W., Vorlesungen über Differential Geometrie, Dover Publications, New York, 1945. (1945) MR0015247
- Bottema, O., Roth, B., Theoretical Kinematics, North-Holland Press, New York, 1979. (1979) Zbl0405.70001MR0533960
- Clifford, W. K., Preliminary Sketch of bi-quaternions, Proc. London Math. Soc. 4 (64, 65) (1873), 361–395. (1873)
- Eisenhart, L. P., A Treatise in Differential Geometry of Curves and Surfaces, New York, Ginn Camp., 1969. (1969)
- Gugenheimer, H. W., Differential Geometry, Graw-Hill, New York, 1956. (1956)
- Gursy, O., 10.1016/0094-114X(90)90114-Y, Mech. Mach. Theory 25 (47) (1990), 131–140. (1990) DOI10.1016/0094-114X(90)90114-Y
- Hlavaty, V., Differential Line Geometry, Groningen, P. Noordhoff Ltd. X, 1953. (1953) Zbl0051.39101MR0057592
- Hoschek, J., Liniengeometrie, B.I. Hochschultaschenbuch, Mannheim, 1971. (1971) Zbl0227.53007MR0353164
- Karger, A., Novak, J., Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985. (1985) MR0801394
- Koch, R., Zur Geometrie der zweiten Grundform der Geradenkongruenzen des , Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). (1981) MR0629825
- Kose, Ö., 10.1016/S0094-114X(96)00034-1, Mech. Mach. Theory 32 (2) (1997), 261–277. (1997) DOI10.1016/S0094-114X(96)00034-1
- Mc-Carthy, J. M., 10.1115/1.3258772, ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. (1987) DOI10.1115/1.3258772
- Muller, H. R., Kinematik Dersleri, Ankara University Press, 1963. (1963) MR0157519
- Schaaf, J. A., Curvature theory of line trajectories in spatial kinematics, Doctoral dissertation, University of California, Davis (1988). (1988) MR2636385
- Schaaf, J. A., 10.1016/S0167-8396(97)00032-0, Comput. Aided Geom. Design 15 (1998), 289–310. (1998) Zbl0903.68192MR1614079DOI10.1016/S0167-8396(97)00032-0
- Stachel, H., Instantaneous spatial kinematics and the invariants of the axodes, Tech. report, Institute für Geometrie, TU Wien 34, 1996. (1996)
- Veldkamp, G. R., 10.1016/0094-114X(76)90006-9, Mech. Mach. Theory 11 (1976), 141–156. (1976) DOI10.1016/0094-114X(76)90006-9
- Weatherburn, M. A., Differential Geometry of Three Dimensions, Cambridge University Press, 1, 1969. (1969)
- Yang, A. T., Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, Doctoral dissertation, Columbia (1967). (1967)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.