Moduli spaces of Lie algebroid connections

Libor Křižka

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 5, page 403-418
  • ISSN: 0044-8753

Abstract

top
We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.

How to cite

top

Křižka, Libor. "Moduli spaces of Lie algebroid connections." Archivum Mathematicum 044.5 (2008): 403-418. <http://eudml.org/doc/250509>.

@article{Křižka2008,
abstract = {We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.},
author = {Křižka, Libor},
journal = {Archivum Mathematicum},
keywords = {moduli space; connection; Lie algebroid; moduli space; connection; Lie algebroid},
language = {eng},
number = {5},
pages = {403-418},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Moduli spaces of Lie algebroid connections},
url = {http://eudml.org/doc/250509},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Křižka, Libor
TI - Moduli spaces of Lie algebroid connections
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 403
EP - 418
AB - We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.
LA - eng
KW - moduli space; connection; Lie algebroid; moduli space; connection; Lie algebroid
UR - http://eudml.org/doc/250509
ER -

References

top
  1. Cuellar, J., Dynin, A., Dynin, S., Fredholm operator families - I, Integral Equations Operator Theory (1983), 853–862. (1983) Zbl0522.47010MR0719108
  2. Donaldson, S. K., Kronheimer, P. B., The Geometry of Four-Manifolds, Oxford University Press, 2001. (2001) MR1079726
  3. Dupré, M. J., Glazebrook, J. F., Infinite dimensional manifold structures on principal bundles, J. Lie Theory 10 (2000), 359–373. (2000) MR1774866
  4. Glöckner, H., 10.1006/jfan.2002.3942, J. Funct. Anal. 194 (2002), 347–409. (2002) Zbl1022.22021MR1934608DOI10.1006/jfan.2002.3942
  5. Glöckner, H., Neeb, K. H., 10.1515/crll.2003.056, J. Reine Angew. Math. 560 (2003), 1–28. (2003) Zbl1029.22029MR1992799DOI10.1515/crll.2003.056
  6. Gualtieri, M., Generalized complex geometry, 2007, math/0703298. 
  7. Gualtieri, M., Generalized complex geometry, Ph.D. thesis, Oxford University, 2004. (2004) 
  8. Gukov, S., Witten, E., Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073. 
  9. Hitchin, N. J., 10.1112/plms/s3-55.1.59, Proc. London Math. Soc. 55 (1987), 59–126. (1987) Zbl0634.53045MR0887284DOI10.1112/plms/s3-55.1.59
  10. Kapustin, A., Witten, E., 10.4310/CNTP.2007.v1.n1.a1, Communications in Number Theory and Physics 1 (2007), 1–236, hep-th/0604151. (2007) Zbl1128.22013MR2306566DOI10.4310/CNTP.2007.v1.n1.a1
  11. Kobayashi, S., Differential Geometry of Complex Vector Bundles, Iwanani Shoten, Publishers and Princeton University Press, 1987. (1987) Zbl0708.53002MR0909698
  12. Lübke, M., Okonek, C., 10.1007/BF01456994, Math. Ann. 276 (1987), 663–674. (1987) MR0879544DOI10.1007/BF01456994
  13. Lübke, M., Teleman, A., The Kobayashi-Hitchin Correspondence, World Scientific, 1995. (1995) MR1370660

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.