Moduli spaces of Lie algebroid connections
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 403-418
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKřižka, Libor. "Moduli spaces of Lie algebroid connections." Archivum Mathematicum 044.5 (2008): 403-418. <http://eudml.org/doc/250509>.
@article{Křižka2008,
abstract = {We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.},
author = {Křižka, Libor},
journal = {Archivum Mathematicum},
keywords = {moduli space; connection; Lie algebroid; moduli space; connection; Lie algebroid},
language = {eng},
number = {5},
pages = {403-418},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Moduli spaces of Lie algebroid connections},
url = {http://eudml.org/doc/250509},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Křižka, Libor
TI - Moduli spaces of Lie algebroid connections
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 5
SP - 403
EP - 418
AB - We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.
LA - eng
KW - moduli space; connection; Lie algebroid; moduli space; connection; Lie algebroid
UR - http://eudml.org/doc/250509
ER -
References
top- Cuellar, J., Dynin, A., Dynin, S., Fredholm operator families - I, Integral Equations Operator Theory (1983), 853–862. (1983) Zbl0522.47010MR0719108
- Donaldson, S. K., Kronheimer, P. B., The Geometry of Four-Manifolds, Oxford University Press, 2001. (2001) MR1079726
- Dupré, M. J., Glazebrook, J. F., Infinite dimensional manifold structures on principal bundles, J. Lie Theory 10 (2000), 359–373. (2000) MR1774866
- Glöckner, H., 10.1006/jfan.2002.3942, J. Funct. Anal. 194 (2002), 347–409. (2002) Zbl1022.22021MR1934608DOI10.1006/jfan.2002.3942
- Glöckner, H., Neeb, K. H., 10.1515/crll.2003.056, J. Reine Angew. Math. 560 (2003), 1–28. (2003) Zbl1029.22029MR1992799DOI10.1515/crll.2003.056
- Gualtieri, M., Generalized complex geometry, 2007, math/0703298.
- Gualtieri, M., Generalized complex geometry, Ph.D. thesis, Oxford University, 2004. (2004)
- Gukov, S., Witten, E., Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073.
- Hitchin, N. J., 10.1112/plms/s3-55.1.59, Proc. London Math. Soc. 55 (1987), 59–126. (1987) Zbl0634.53045MR0887284DOI10.1112/plms/s3-55.1.59
- Kapustin, A., Witten, E., 10.4310/CNTP.2007.v1.n1.a1, Communications in Number Theory and Physics 1 (2007), 1–236, hep-th/0604151. (2007) Zbl1128.22013MR2306566DOI10.4310/CNTP.2007.v1.n1.a1
- Kobayashi, S., Differential Geometry of Complex Vector Bundles, Iwanani Shoten, Publishers and Princeton University Press, 1987. (1987) Zbl0708.53002MR0909698
- Lübke, M., Okonek, C., 10.1007/BF01456994, Math. Ann. 276 (1987), 663–674. (1987) MR0879544DOI10.1007/BF01456994
- Lübke, M., Teleman, A., The Kobayashi-Hitchin Correspondence, World Scientific, 1995. (1995) MR1370660
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.