On some problems connected with diagonal map in some spaces of analytic functions
Mathematica Bohemica (2008)
- Volume: 133, Issue: 4, page 351-366
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topShamoyan, Romi. "On some problems connected with diagonal map in some spaces of analytic functions." Mathematica Bohemica 133.4 (2008): 351-366. <http://eudml.org/doc/250527>.
@article{Shamoyan2008,
abstract = {For any holomorphic function $f$ on the unit polydisk $\mathbb \{D\} ^n$ we consider its restriction to the diagonal, i.e., the function in the unit disc $\mathbb \{D\} \subset \mathbb \{C\} $ defined by $\mathop \{\rm Diag\} f(z)=f(z,\ldots ,z)$, and prove that the diagonal map $\{\rm Diag\}$ maps the space $Q_\{p,q,s\}(\mathbb \{D\} ^n)$ of the polydisk onto the space $\widehat\{Q\}^q_\{p,s,n\}(\mathbb \{D\} )$ of the unit disk.},
author = {Shamoyan, Romi},
journal = {Mathematica Bohemica},
keywords = {diagonal map; holomorphic function; Bergman space; polydisk; diagonal map; holomorphic function; Bergman space; polydisk},
language = {eng},
number = {4},
pages = {351-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some problems connected with diagonal map in some spaces of analytic functions},
url = {http://eudml.org/doc/250527},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Shamoyan, Romi
TI - On some problems connected with diagonal map in some spaces of analytic functions
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 351
EP - 366
AB - For any holomorphic function $f$ on the unit polydisk $\mathbb {D} ^n$ we consider its restriction to the diagonal, i.e., the function in the unit disc $\mathbb {D} \subset \mathbb {C} $ defined by $\mathop {\rm Diag} f(z)=f(z,\ldots ,z)$, and prove that the diagonal map ${\rm Diag}$ maps the space $Q_{p,q,s}(\mathbb {D} ^n)$ of the polydisk onto the space $\widehat{Q}^q_{p,s,n}(\mathbb {D} )$ of the unit disk.
LA - eng
KW - diagonal map; holomorphic function; Bergman space; polydisk; diagonal map; holomorphic function; Bergman space; polydisk
UR - http://eudml.org/doc/250527
ER -
References
top- Duren, P. L., Shields, A. L., 10.1215/S0012-7094-75-04262-3, Duke Math. J. 42 (1975), 751-753. (1975) MR0402101DOI10.1215/S0012-7094-75-04262-3
- Essen, M., Wulan, H., Xiao, J., 10.1016/j.jfa.2005.07.004, J. Funct. Anal. 230 (2006), 78-115. (2006) MR2184185DOI10.1016/j.jfa.2005.07.004
- Luecking, D., 10.1090/S0002-9939-1988-0947675-0, Proc. Am. Math. Soc. 103 (1988), 887-893. (1988) Zbl0665.30035MR0947675DOI10.1090/S0002-9939-1988-0947675-0
- Lusin, N., Sur une propriete des fonctions a carre sommable, Bulletin Calcutta M. S. 20 (1930), 139-154. (1930)
- Ortega, J., Fabrega, J., 10.1215/ijm/1256060689, Ill. J. Math. 43 (1993), 733-751. (1993) DOI10.1215/ijm/1256060689
- Ortega, J., Fabrega, J., 10.1007/s00208-003-0461-6, Math. Ann. 329 (2004), 247-277. (2004) MR2060362DOI10.1007/s00208-003-0461-6
- Piranian, G., Rudin, W., Lusin's theorem on areas of conformal maps, Mich. Math. J. 3 (1956), 191-199. (1956) Zbl0074.05602MR0083553
- Ren, G., Huai, S. J., 10.4064/sm163-2-1, Stud. Math. 163 (2004), 103-117. (2004) MR2047374DOI10.4064/sm163-2-1
- Rudin, W., Function Theory in Polydiscs, Benjamin, New York (1969). (1969) Zbl0177.34101MR0255841
- Shamoyan, R. F., 10.1023/A:1014322910001, Ukr. Math. J. (2001), 53 1519-1534. (2001) Zbl1010.32005MR1900044DOI10.1023/A:1014322910001
- Shamoyan, F. A., Djrbashian, A. E., Topics in the Theory of Spaces, Teubner Texte zur Math. Leipzig (1988). (1988)
- Shi, J. H., 10.1090/S0002-9947-1991-1016807-5, Trans. Am. Math. Soc. 328 (1991), 619-637. (1991) MR1016807DOI10.1090/S0002-9947-1991-1016807-5
- c, S. Stevi', 10.1007/BF03322780, Result. Math. 41 (2002), 386-393. (2002) MR1915936DOI10.1007/BF03322780
- c, S. Stevi', 10.2969/jmsj/1191592001, J. Math. Soc. Japan 54 (2002), 983-996. (2002) MR1921096DOI10.2969/jmsj/1191592001
- c, S. Stevi', Weighted integrals of holomorphic functions on the unit polydisk II, Z. Anal. Anwend. 23 (2004), 775-782. (2004) MR2110405
- Yamashita, S., Criteria for functions to be of Hardy class , Proc. Am. Math. Soc. 75 (1979), 69-72. (1979) MR0529215
- Zhu, K., The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Am. Math. Soc. 309 (1988), 253-268. (1988) MR0931533
- Zhu, K., 10.1016/0022-1236(88)90100-0, J. Funct. Anal. 81 (1988), 260-278. (1988) Zbl0669.47019MR0971880DOI10.1016/0022-1236(88)90100-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.