On some problems connected with diagonal map in some spaces of analytic functions

Romi Shamoyan

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 4, page 351-366
  • ISSN: 0862-7959

Abstract

top
For any holomorphic function f on the unit polydisk 𝔻 n we consider its restriction to the diagonal, i.e., the function in the unit disc 𝔻 defined by Diag f ( z ) = f ( z , ... , z ) , and prove that the diagonal map Diag maps the space Q p , q , s ( 𝔻 n ) of the polydisk onto the space Q ^ p , s , n q ( 𝔻 ) of the unit disk.

How to cite

top

Shamoyan, Romi. "On some problems connected with diagonal map in some spaces of analytic functions." Mathematica Bohemica 133.4 (2008): 351-366. <http://eudml.org/doc/250527>.

@article{Shamoyan2008,
abstract = {For any holomorphic function $f$ on the unit polydisk $\mathbb \{D\} ^n$ we consider its restriction to the diagonal, i.e., the function in the unit disc $\mathbb \{D\} \subset \mathbb \{C\} $ defined by $\mathop \{\rm Diag\} f(z)=f(z,\ldots ,z)$, and prove that the diagonal map $\{\rm Diag\}$ maps the space $Q_\{p,q,s\}(\mathbb \{D\} ^n)$ of the polydisk onto the space $\widehat\{Q\}^q_\{p,s,n\}(\mathbb \{D\} )$ of the unit disk.},
author = {Shamoyan, Romi},
journal = {Mathematica Bohemica},
keywords = {diagonal map; holomorphic function; Bergman space; polydisk; diagonal map; holomorphic function; Bergman space; polydisk},
language = {eng},
number = {4},
pages = {351-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some problems connected with diagonal map in some spaces of analytic functions},
url = {http://eudml.org/doc/250527},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Shamoyan, Romi
TI - On some problems connected with diagonal map in some spaces of analytic functions
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 351
EP - 366
AB - For any holomorphic function $f$ on the unit polydisk $\mathbb {D} ^n$ we consider its restriction to the diagonal, i.e., the function in the unit disc $\mathbb {D} \subset \mathbb {C} $ defined by $\mathop {\rm Diag} f(z)=f(z,\ldots ,z)$, and prove that the diagonal map ${\rm Diag}$ maps the space $Q_{p,q,s}(\mathbb {D} ^n)$ of the polydisk onto the space $\widehat{Q}^q_{p,s,n}(\mathbb {D} )$ of the unit disk.
LA - eng
KW - diagonal map; holomorphic function; Bergman space; polydisk; diagonal map; holomorphic function; Bergman space; polydisk
UR - http://eudml.org/doc/250527
ER -

References

top
  1. Duren, P. L., Shields, A. L., 10.1215/S0012-7094-75-04262-3, Duke Math. J. 42 (1975), 751-753. (1975) MR0402101DOI10.1215/S0012-7094-75-04262-3
  2. Essen, M., Wulan, H., Xiao, J., 10.1016/j.jfa.2005.07.004, J. Funct. Anal. 230 (2006), 78-115. (2006) MR2184185DOI10.1016/j.jfa.2005.07.004
  3. Luecking, D., 10.1090/S0002-9939-1988-0947675-0, Proc. Am. Math. Soc. 103 (1988), 887-893. (1988) Zbl0665.30035MR0947675DOI10.1090/S0002-9939-1988-0947675-0
  4. Lusin, N., Sur une propriete des fonctions a carre sommable, Bulletin Calcutta M. S. 20 (1930), 139-154. (1930) 
  5. Ortega, J., Fabrega, J., 10.1215/ijm/1256060689, Ill. J. Math. 43 (1993), 733-751. (1993) DOI10.1215/ijm/1256060689
  6. Ortega, J., Fabrega, J., 10.1007/s00208-003-0461-6, Math. Ann. 329 (2004), 247-277. (2004) MR2060362DOI10.1007/s00208-003-0461-6
  7. Piranian, G., Rudin, W., Lusin's theorem on areas of conformal maps, Mich. Math. J. 3 (1956), 191-199. (1956) Zbl0074.05602MR0083553
  8. Ren, G., Huai, S. J., 10.4064/sm163-2-1, Stud. Math. 163 (2004), 103-117. (2004) MR2047374DOI10.4064/sm163-2-1
  9. Rudin, W., Function Theory in Polydiscs, Benjamin, New York (1969). (1969) Zbl0177.34101MR0255841
  10. Shamoyan, R. F., 10.1023/A:1014322910001, Ukr. Math. J. (2001), 53 1519-1534. (2001) Zbl1010.32005MR1900044DOI10.1023/A:1014322910001
  11. Shamoyan, F. A., Djrbashian, A. E., Topics in the Theory of 𝒜 α p Spaces, Teubner Texte zur Math. Leipzig (1988). (1988) 
  12. Shi, J. H., 10.1090/S0002-9947-1991-1016807-5, Trans. Am. Math. Soc. 328 (1991), 619-637. (1991) MR1016807DOI10.1090/S0002-9947-1991-1016807-5
  13. c, S. Stevi', 10.1007/BF03322780, Result. Math. 41 (2002), 386-393. (2002) MR1915936DOI10.1007/BF03322780
  14. c, S. Stevi', 10.2969/jmsj/1191592001, J. Math. Soc. Japan 54 (2002), 983-996. (2002) MR1921096DOI10.2969/jmsj/1191592001
  15. c, S. Stevi', Weighted integrals of holomorphic functions on the unit polydisk II, Z. Anal. Anwend. 23 (2004), 775-782. (2004) MR2110405
  16. Yamashita, S., Criteria for functions to be of Hardy class H p , Proc. Am. Math. Soc. 75 (1979), 69-72. (1979) MR0529215
  17. Zhu, K., The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Am. Math. Soc. 309 (1988), 253-268. (1988) MR0931533
  18. Zhu, K., 10.1016/0022-1236(88)90100-0, J. Funct. Anal. 81 (1988), 260-278. (1988) Zbl0669.47019MR0971880DOI10.1016/0022-1236(88)90100-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.