Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces
Mallasamudram Kuppusamy Uma; Elango Roja; Ganesan Balasubramanian
Mathematica Bohemica (2008)
- Volume: 133, Issue: 4, page 341-349
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topUma, Mallasamudram Kuppusamy, Roja, Elango, and Balasubramanian, Ganesan. "Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces." Mathematica Bohemica 133.4 (2008): 341-349. <http://eudml.org/doc/250531>.
@article{Uma2008,
abstract = {In this paper a new class of fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak (1987) besides proving several other propositions and lemmas.},
author = {Uma, Mallasamudram Kuppusamy, Roja, Elango, Balasubramanian, Ganesan},
journal = {Mathematica Bohemica},
keywords = {pairwise ordered fuzzy extremally disconnected space; ordered $T_1$-fuzzy continuous function; lower (upper) $T_1$-fuzzy continuous functions; pairwise ordered fuzzy extremally disconnected space; ordered -fuzzy continuous function; lower (upper) -fuzzy continuous functions},
language = {eng},
number = {4},
pages = {341-349},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces},
url = {http://eudml.org/doc/250531},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Uma, Mallasamudram Kuppusamy
AU - Roja, Elango
AU - Balasubramanian, Ganesan
TI - Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 341
EP - 349
AB - In this paper a new class of fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak (1987) besides proving several other propositions and lemmas.
LA - eng
KW - pairwise ordered fuzzy extremally disconnected space; ordered $T_1$-fuzzy continuous function; lower (upper) $T_1$-fuzzy continuous functions; pairwise ordered fuzzy extremally disconnected space; ordered -fuzzy continuous function; lower (upper) -fuzzy continuous functions
UR - http://eudml.org/doc/250531
ER -
References
top- Balasubramanian, G., Fuzzy disconnectedness and its stronger forms, Indian J. Pure Appl. Math. 24 (1993), 27-30. (1993) Zbl0785.54005MR1203246
- Balasubramanian, G., On fuzzy -compact spaces and fuzzy -extremally disconnected spaces, Kybernetika 33 (1997), 271-277. (1997) Zbl0932.54008MR1463609
- Balasubramanian, G., Sundaram, P., On some generalizations of fuzzy continuous functions, Fuzzy Sets Syst. 86 (1997), 93-100. (1997) Zbl0921.54005MR1438441
- Balasubramanian, G., Maximal fuzzy topologies, Kybernetika 31 (1995), 459-464. (1995) Zbl0856.54004MR1361307
- Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Kandil, A., Biproximities and fuzzy bitopological spaces, Simen Stevin 63 (1989), 45-66. (1989) Zbl0681.54015MR1021455
- Katsaras, A. K., 10.1016/0022-247X(81)90150-5, J. Math. Anal. Appl. 84 (1981), 44-58. (1981) Zbl0512.54005MR0639523DOI10.1016/0022-247X(81)90150-5
- Smets, P., 10.1016/0020-0255(81)90008-6, Information Sciences 25 (1981), 1-19. (1981) Zbl0472.62005MR0651984DOI10.1016/0020-0255(81)90008-6
- Sugeno, M., 10.1016/0020-0255(85)90026-X, Information Sciences 36 (1985), 59-83. (1985) Zbl0586.93053MR0813765DOI10.1016/0020-0255(85)90026-X
- Kubiak, T., 10.1016/0022-247X(87)90169-7, J. Math. Anal. Appl. 25 (1987), 141-153. (1987) Zbl0643.54008MR0891354DOI10.1016/0022-247X(87)90169-7
- Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inf. Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.