Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
Anna Andruch-Sobiło; Andrzej Drozdowicz
Mathematica Bohemica (2008)
- Volume: 133, Issue: 3, page 247-258
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAndruch-Sobiło, Anna, and Drozdowicz, Andrzej. "Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type." Mathematica Bohemica 133.3 (2008): 247-258. <http://eudml.org/doc/250534>.
@article{Andruch2008,
abstract = {In the paper we consider the difference equation of neutral type \[ \Delta ^\{3\}[x(n)-p(n)x(\sigma (n))] + q(n)f(x(\tau (n)))=0, \quad n \in \mathbb \{N\} (n\_0), \]
where $p,q\colon \mathbb \{N\}(n_0)\rightarrow \mathbb \{R\}_+$; $\sigma , \tau \colon \mathbb \{N\}\rightarrow \mathbb \{Z\}$, $\sigma $ is strictly increasing and $\lim \limits _\{n \rightarrow \infty \}\sigma (n)=\infty ;$$\tau $ is nondecreasing and $\lim \limits _\{n \rightarrow \infty \}\tau (n)=\infty $, $f\colon \mathbb \{R\}\rightarrow \{\mathbb \{R\}\}$, $xf(x)>0$. We examine the following two cases: \[ 0<p(n)\le \lambda ^*< 1,\quad \sigma (n)=n-k,\quad \tau (n)=n-l, \]
and \[1<\lambda \_*\le p(n),\quad \sigma (n)=n+k,\quad \tau (n)=n+l,\]
where $k$, $l$ are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as $n\rightarrow \infty $ with a weaker assumption on $q$ than the usual assumption $\sum \limits _\{i=n_0\}^\{\infty \}q(i)=\infty $ that is used in literature.},
author = {Andruch-Sobiło, Anna, Drozdowicz, Andrzej},
journal = {Mathematica Bohemica},
keywords = {neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior; neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior},
language = {eng},
number = {3},
pages = {247-258},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type},
url = {http://eudml.org/doc/250534},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Andruch-Sobiło, Anna
AU - Drozdowicz, Andrzej
TI - Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 3
SP - 247
EP - 258
AB - In the paper we consider the difference equation of neutral type \[ \Delta ^{3}[x(n)-p(n)x(\sigma (n))] + q(n)f(x(\tau (n)))=0, \quad n \in \mathbb {N} (n_0), \]
where $p,q\colon \mathbb {N}(n_0)\rightarrow \mathbb {R}_+$; $\sigma , \tau \colon \mathbb {N}\rightarrow \mathbb {Z}$, $\sigma $ is strictly increasing and $\lim \limits _{n \rightarrow \infty }\sigma (n)=\infty ;$$\tau $ is nondecreasing and $\lim \limits _{n \rightarrow \infty }\tau (n)=\infty $, $f\colon \mathbb {R}\rightarrow {\mathbb {R}}$, $xf(x)>0$. We examine the following two cases: \[ 0<p(n)\le \lambda ^*< 1,\quad \sigma (n)=n-k,\quad \tau (n)=n-l, \]
and \[1<\lambda _*\le p(n),\quad \sigma (n)=n+k,\quad \tau (n)=n+l,\]
where $k$, $l$ are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as $n\rightarrow \infty $ with a weaker assumption on $q$ than the usual assumption $\sum \limits _{i=n_0}^{\infty }q(i)=\infty $ that is used in literature.
LA - eng
KW - neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior; neutral type difference equation; third order difference equation; nonoscillatory solutions; asymptotic behavior
UR - http://eudml.org/doc/250534
ER -
References
top- Agarwal, R. P., Difference Equations and Inequalities, 2nd edition, Pure Appl. Math. 228, Marcel Dekker, New York (2000). (2000) MR1740241
- Dorociaková, B., Asymptotic behaviour of third order linear neutral differential equations, Studies of University in Žilina 13 (2001), 57-64. (2001) Zbl1040.34098MR1874004
- Dorociaková, B., Asymptotic criteria for third order linear neutral differential equations, Folia FSN Universitatis Masarykianae Brunensis, Mathematica 13 (2003), 107-111. (2003) Zbl1111.34342MR2030427
- Grace, S. R., Hamedani, G. G., On the oscillation of certain neutral difference equations, Math. Bohem. 125 (2000), 307-321. (2000) Zbl0969.39006MR1790122
- Luo, J. W., Bainov, D. D., 10.1016/S0377-0427(00)00264-8, J. Comp. Appl. Math. 131 (2001), 333-341. (2001) Zbl0984.39006MR1835720DOI10.1016/S0377-0427(00)00264-8
- Luo, J., Yu, Y., Asymptotic behavior of solutions of second order neutral difference equations with "maxima'', Demonstratio Math. 34 (2001), 83-89. (2001) MR1823087
- Lalli, B. S., Zhang, B. G., 10.1016/0022-247X(92)90342-B, J. Math. Anal. Appl. 166 (1992), 272-287. (1992) Zbl0763.39002MR1159653DOI10.1016/0022-247X(92)90342-B
- Lalli, B. S., Zhang, B. G., Li, J. Z., 10.1016/0022-247X(91)90278-8, J. Math. Anal. Appl. 158 (1991), 213-233. (1991) Zbl0732.39002MR1113411DOI10.1016/0022-247X(91)90278-8
- Migda, M., Migda, J., 10.1016/j.mcm.2003.12.006, Math. Comput. Modelling 40 (2004), 297-306. (2004) MR2091062DOI10.1016/j.mcm.2003.12.006
- Parhi, N., Tripathy, A. K., 10.1016/S0022-247X(03)00298-1, J. Math. Anal. 284 (2003), 756-774. (2003) Zbl1037.39002MR1998666DOI10.1016/S0022-247X(03)00298-1
- Szmanda, B., Note on the behavior of solutions of difference equations of arbitrary order, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 8 (1997), 52-59. (1997) Zbl0887.39004MR1480399
- Thandapani, E., Arul, R., Raja, P. S., Oscillation of first order neutral delay difference equations, Appl. Math. E-Notes 3 (2003), 88-94. (2003) Zbl1027.39003MR1980570
- Thandapani, E., Sundaram, P., Asymptotic and oscillatory behavior of solutions of nonlinear neutral delay difference equations, Utilitas Math. 45 (1994), 237-244. (1994) MR1284034
- Thandapani, E., Sundaram, E., Asymptotic and oscillatory behavior of solutions of first order nonlinear neutral difference equations, Rivista Math.Pura Appl. 18 (1996), 93-105. (1996) Zbl0901.39004MR1600048
- Zafer, A., Dahiya, R. S., 10.1016/0893-9659(93)90015-F, Appl. Math. Lett. 6 (1993), 71-74. (1993) Zbl0772.39001MR1347777DOI10.1016/0893-9659(93)90015-F
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.