Morse-Sard theorem for delta-convex curves
Mathematica Bohemica (2008)
- Volume: 133, Issue: 4, page 337-340
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPavlica, D.. "Morse-Sard theorem for delta-convex curves." Mathematica Bohemica 133.4 (2008): 337-340. <http://eudml.org/doc/250541>.
@article{Pavlica2008,
abstract = {Let $f\colon I\rightarrow X$ be a delta-convex mapping, where $I\subset \mathbb \{R\} $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.},
author = {Pavlica, D.},
journal = {Mathematica Bohemica},
keywords = {Morse-Sard theorem; delta-convex mapping; Morse-Sard theorem; delta-convex mapping},
language = {eng},
number = {4},
pages = {337-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Morse-Sard theorem for delta-convex curves},
url = {http://eudml.org/doc/250541},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Pavlica, D.
TI - Morse-Sard theorem for delta-convex curves
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 337
EP - 340
AB - Let $f\colon I\rightarrow X$ be a delta-convex mapping, where $I\subset \mathbb {R} $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.
LA - eng
KW - Morse-Sard theorem; delta-convex mapping; Morse-Sard theorem; delta-convex mapping
UR - http://eudml.org/doc/250541
ER -
References
top- Bourbaki, N., Éléments de mathématique IX., Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire), Act. Sci. et Ind. vol. 1074, Hermann, Paris (1968). (1968)
- Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer, New York (1969). (1969) Zbl0176.00801MR0257325
- Hartman, P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
- Kirchheim, B., 10.1090/S0002-9939-1994-1189747-7, Proc. Amer. Math. Soc. 121 (1994), 113-123. (1994) Zbl0806.28004MR1189747DOI10.1090/S0002-9939-1994-1189747-7
- Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge (1995). (1995) Zbl0819.28004MR1333890
- Pavlica, D., Zajíček, L., Morse-Sard theorem for d. c. functions and mappings on , Indiana Univ. Math. J. 55 (2006), 1195-1207. (2006) MR2244604
- Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989). (1989) MR1016045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.