Morse-Sard theorem for delta-convex curves

D. Pavlica

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 4, page 337-340
  • ISSN: 0862-7959

Abstract

top
Let f : I X be a delta-convex mapping, where I is an open interval and X a Banach space. Let C f be the set of critical points of f . We prove that f ( C f ) has zero 1 / 2 -dimensional Hausdorff measure.

How to cite

top

Pavlica, D.. "Morse-Sard theorem for delta-convex curves." Mathematica Bohemica 133.4 (2008): 337-340. <http://eudml.org/doc/250541>.

@article{Pavlica2008,
abstract = {Let $f\colon I\rightarrow X$ be a delta-convex mapping, where $I\subset \mathbb \{R\} $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.},
author = {Pavlica, D.},
journal = {Mathematica Bohemica},
keywords = {Morse-Sard theorem; delta-convex mapping; Morse-Sard theorem; delta-convex mapping},
language = {eng},
number = {4},
pages = {337-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Morse-Sard theorem for delta-convex curves},
url = {http://eudml.org/doc/250541},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Pavlica, D.
TI - Morse-Sard theorem for delta-convex curves
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 4
SP - 337
EP - 340
AB - Let $f\colon I\rightarrow X$ be a delta-convex mapping, where $I\subset \mathbb {R} $ is an open interval and $X$ a Banach space. Let $C_f$ be the set of critical points of $f$. We prove that $f(C_f)$ has zero $1/2$-dimensional Hausdorff measure.
LA - eng
KW - Morse-Sard theorem; delta-convex mapping; Morse-Sard theorem; delta-convex mapping
UR - http://eudml.org/doc/250541
ER -

References

top
  1. Bourbaki, N., Éléments de mathématique IX., Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire), Act. Sci. et Ind. vol. 1074, Hermann, Paris (1968). (1968) 
  2. Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer, New York (1969). (1969) Zbl0176.00801MR0257325
  3. Hartman, P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
  4. Kirchheim, B., 10.1090/S0002-9939-1994-1189747-7, Proc. Amer. Math. Soc. 121 (1994), 113-123. (1994) Zbl0806.28004MR1189747DOI10.1090/S0002-9939-1994-1189747-7
  5. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge (1995). (1995) Zbl0819.28004MR1333890
  6. Pavlica, D., Zajíček, L., Morse-Sard theorem for d. c. functions and mappings on 2 , Indiana Univ. Math. J. 55 (2006), 1195-1207. (2006) MR2244604
  7. Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989). (1989) MR1016045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.