Dejean's conjecture holds for N ≥ 27
RAIRO - Theoretical Informatics and Applications (2009)
- Volume: 43, Issue: 4, page 775-778
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- F.J. Brandenburg, Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci.23 (1983) 69–82.
- J. Brinkhuis, Non-repetitive sequences on three symbols. Quart. J. Math. Oxford34 (1983) 145–149.
- A. Carpi, On Dejean's conjecture over large alphabets. Theoret. Comput. Sci.385 (2007) 137–151.
- J.D. Currie and N. Rampersad, Dejean's conjecture holds for n ≥ 30. Theoret. Comput. Sci.410 (2009) 2885–2888.
- J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, . URIhttp://arxiv.org/pdf/0905.1129v3
- F. Dejean, Sur un théorème de Thue. J. Combin. Theory Ser. A13 (1972) 90–99.
- L. Ilie, P. Ochem and J. Shallit, A generalization of repetition threshold. Theoret. Comput. Sci.345 (2005) 359–369.
- D. Krieger, On critical exponents in fixed points of non-erasing morphisms. Theoret.Comput. Sci.376 (2007) 70–88.
- M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983).
- F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl.26 (1992) 199–204.
- M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin.28 (2007) 876–890.
- J. Moulin Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci.95 (1992) 187–205.
- J.-J. Pansiot, À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math.7 (1984) 297–311.
- M. Rao, Last cases of Dejean's Conjecture, . URIhttp://www.labri.fr/perso/rao/publi/dejean.ps
- A. Thue, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana7 (1906) 1–22.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana1 (1912) 1–67.