Dejean's conjecture holds for N ≥ 27
RAIRO - Theoretical Informatics and Applications (2009)
- Volume: 43, Issue: 4, page 775-778
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topCurrie, James, and Rampersad, Narad. "Dejean's conjecture holds for N ≥ 27." RAIRO - Theoretical Informatics and Applications 43.4 (2009): 775-778. <http://eudml.org/doc/250568>.
@article{Currie2009,
abstract = {
We show that Dejean's conjecture
holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
},
author = {Currie, James, Rampersad, Narad},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Dejean's conjecture; repetitions in words; fractional exponent.; fractional exponent},
language = {eng},
month = {9},
number = {4},
pages = {775-778},
publisher = {EDP Sciences},
title = {Dejean's conjecture holds for N ≥ 27},
url = {http://eudml.org/doc/250568},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Currie, James
AU - Rampersad, Narad
TI - Dejean's conjecture holds for N ≥ 27
JO - RAIRO - Theoretical Informatics and Applications
DA - 2009/9//
PB - EDP Sciences
VL - 43
IS - 4
SP - 775
EP - 778
AB -
We show that Dejean's conjecture
holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
LA - eng
KW - Dejean's conjecture; repetitions in words; fractional exponent.; fractional exponent
UR - http://eudml.org/doc/250568
ER -
References
top- F.J. Brandenburg, Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci.23 (1983) 69–82.
- J. Brinkhuis, Non-repetitive sequences on three symbols. Quart. J. Math. Oxford34 (1983) 145–149.
- A. Carpi, On Dejean's conjecture over large alphabets. Theoret. Comput. Sci.385 (2007) 137–151.
- J.D. Currie and N. Rampersad, Dejean's conjecture holds for n ≥ 30. Theoret. Comput. Sci.410 (2009) 2885–2888.
- J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, . URIhttp://arxiv.org/pdf/0905.1129v3
- F. Dejean, Sur un théorème de Thue. J. Combin. Theory Ser. A13 (1972) 90–99.
- L. Ilie, P. Ochem and J. Shallit, A generalization of repetition threshold. Theoret. Comput. Sci.345 (2005) 359–369.
- D. Krieger, On critical exponents in fixed points of non-erasing morphisms. Theoret.Comput. Sci.376 (2007) 70–88.
- M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983).
- F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl.26 (1992) 199–204.
- M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin.28 (2007) 876–890.
- J. Moulin Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci.95 (1992) 187–205.
- J.-J. Pansiot, À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math.7 (1984) 297–311.
- M. Rao, Last cases of Dejean's Conjecture, . URIhttp://www.labri.fr/perso/rao/publi/dejean.ps
- A. Thue, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana7 (1906) 1–22.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana1 (1912) 1–67.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.