Energy-preserving Runge-Kutta methods
Elena Celledoni; Robert I. McLachlan; David I. McLaren; Brynjulf Owren; G. Reinout W. Quispel; William M. Wright
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 4, page 645-649
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCelledoni, Elena, et al. "Energy-preserving Runge-Kutta methods." ESAIM: Mathematical Modelling and Numerical Analysis 43.4 (2009): 645-649. <http://eudml.org/doc/250591>.
@article{Celledoni2009,
abstract = {
We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.
},
author = {Celledoni, Elena, McLachlan, Robert I., McLaren, David I., Owren, Brynjulf, Reinout W. Quispel, G., Wright, William M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {B-series; Hamiltonian systems; energy-preserving integrators; Runge-Kutta methods.; Runge-Kutta methods},
language = {eng},
month = {7},
number = {4},
pages = {645-649},
publisher = {EDP Sciences},
title = {Energy-preserving Runge-Kutta methods},
url = {http://eudml.org/doc/250591},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Celledoni, Elena
AU - McLachlan, Robert I.
AU - McLaren, David I.
AU - Owren, Brynjulf
AU - Reinout W. Quispel, G.
AU - Wright, William M.
TI - Energy-preserving Runge-Kutta methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/7//
PB - EDP Sciences
VL - 43
IS - 4
SP - 645
EP - 649
AB -
We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.
LA - eng
KW - B-series; Hamiltonian systems; energy-preserving integrators; Runge-Kutta methods.; Runge-Kutta methods
UR - http://eudml.org/doc/250591
ER -
References
top- M.-P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows. Math. Comput.66(1997) 1461–1486.
- E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Preprint.
- P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math.103 (2006) 575–590.
- G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal.7 (1987) 1–13.
- E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT44 (2004) 699–709.
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006).
- A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math.125 (2000) 69–81.
- R.I. McLachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal.35 (1998) 586–599.
- R.I. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A357 (1999) 1021–1046.
- G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods. J. Phys. A41 (2008) 045206.
- J.E. Scully, A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).
- L.F. Shampine, Conservation laws and the numerical solution of ODEs. Comput. Math. Appl.12B (1986) 1287–1296.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.