# Energy-preserving Runge-Kutta methods

Elena Celledoni; Robert I. McLachlan; David I. McLaren; Brynjulf Owren; G. Reinout W. Quispel; William M. Wright

ESAIM: Mathematical Modelling and Numerical Analysis (2009)

- Volume: 43, Issue: 4, page 645-649
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topCelledoni, Elena, et al. "Energy-preserving Runge-Kutta methods." ESAIM: Mathematical Modelling and Numerical Analysis 43.4 (2009): 645-649. <http://eudml.org/doc/250591>.

@article{Celledoni2009,

abstract = {
We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.
},

author = {Celledoni, Elena, McLachlan, Robert I., McLaren, David I., Owren, Brynjulf, Reinout W. Quispel, G., Wright, William M.},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {B-series; Hamiltonian systems; energy-preserving integrators; Runge-Kutta methods.; Runge-Kutta methods},

language = {eng},

month = {7},

number = {4},

pages = {645-649},

publisher = {EDP Sciences},

title = {Energy-preserving Runge-Kutta methods},

url = {http://eudml.org/doc/250591},

volume = {43},

year = {2009},

}

TY - JOUR

AU - Celledoni, Elena

AU - McLachlan, Robert I.

AU - McLaren, David I.

AU - Owren, Brynjulf

AU - Reinout W. Quispel, G.

AU - Wright, William M.

TI - Energy-preserving Runge-Kutta methods

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2009/7//

PB - EDP Sciences

VL - 43

IS - 4

SP - 645

EP - 649

AB -
We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.

LA - eng

KW - B-series; Hamiltonian systems; energy-preserving integrators; Runge-Kutta methods.; Runge-Kutta methods

UR - http://eudml.org/doc/250591

ER -

## References

top- M.-P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows. Math. Comput.66(1997) 1461–1486.
- E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Preprint.
- P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math.103 (2006) 575–590.
- G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal.7 (1987) 1–13.
- E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT44 (2004) 699–709.
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006).
- A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math.125 (2000) 69–81.
- R.I. McLachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal.35 (1998) 586–599.
- R.I. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A357 (1999) 1021–1046.
- G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods. J. Phys. A41 (2008) 045206.
- J.E. Scully, A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).
- L.F. Shampine, Conservation laws and the numerical solution of ODEs. Comput. Math. Appl.12B (1986) 1287–1296.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.