Energy-preserving Runge-Kutta methods
Elena Celledoni; Robert I. McLachlan; David I. McLaren; Brynjulf Owren; G. Reinout W. Quispel; William M. Wright
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 4, page 645-649
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.-P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows. Math. Comput.66(1997) 1461–1486.
- E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Preprint.
- P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math.103 (2006) 575–590.
- G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal.7 (1987) 1–13.
- E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT44 (2004) 699–709.
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006).
- A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math.125 (2000) 69–81.
- R.I. McLachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal.35 (1998) 586–599.
- R.I. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A357 (1999) 1021–1046.
- G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods. J. Phys. A41 (2008) 045206.
- J.E. Scully, A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).
- L.F. Shampine, Conservation laws and the numerical solution of ODEs. Comput. Math. Appl.12B (1986) 1287–1296.