Mixed approximation of eigenvalue problems: A superconvergence result

Francesca Gardini

ESAIM: Mathematical Modelling and Numerical Analysis (2009)

  • Volume: 43, Issue: 5, page 853-865
  • ISSN: 0764-583X

Abstract

top
We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini approximation.

How to cite

top

Gardini, Francesca. "Mixed approximation of eigenvalue problems: A superconvergence result." ESAIM: Mathematical Modelling and Numerical Analysis 43.5 (2009): 853-865. <http://eudml.org/doc/250592>.

@article{Gardini2009,
abstract = { We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini approximation. },
author = {Gardini, Francesca},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Eigenvalue problem; mixed finite element; superconvergence result; eigenvalue problem; mixed finite element method; superconvergence; Laplace problem; Poisson equation; Raviart-Thomas approximation; Neumann boundary condition; Crouzeix-Raviart approximation; numerical experiments},
language = {eng},
month = {4},
number = {5},
pages = {853-865},
publisher = {EDP Sciences},
title = {Mixed approximation of eigenvalue problems: A superconvergence result},
url = {http://eudml.org/doc/250592},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Gardini, Francesca
TI - Mixed approximation of eigenvalue problems: A superconvergence result
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2009/4//
PB - EDP Sciences
VL - 43
IS - 5
SP - 853
EP - 865
AB - We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini approximation.
LA - eng
KW - Eigenvalue problem; mixed finite element; superconvergence result; eigenvalue problem; mixed finite element method; superconvergence; Laplace problem; Poisson equation; Raviart-Thomas approximation; Neumann boundary condition; Crouzeix-Raviart approximation; numerical experiments
UR - http://eudml.org/doc/250592
ER -

References

top
  1. R.A. Adams, Sobolev spaces, Pure and Applied Mathematics65. Academic Press, New York-London (1975).  
  2. A. Alonso, A. Dello Russo and A. Vampa, A posteriori error estimates in finite element acoustic analysis. J. Comput. Appl. Math.117 (2000) 105–119.  
  3. A. Alonso, A. Dello Russo, C. Padra and R. Rodriguez, Accurate pressure post-process of a finite element method for elastoacoustics. Numer. Math.98 (2004) 389–425.  
  4. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér.19 (1985) 7–32.  
  5. I. Babǔska and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis2, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991).  
  6. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa Cl. Sci.25 (1997) 131–154.  
  7. D. Boffi, F. Kikuci and J. Schöberl, Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci.16 (2006) 265–273.  
  8. J.H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math.68 (1994) 311–324.  
  9. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics15. Springer-Verlag, New York (1991).  
  10. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its application4. North Holland, Amsterdam (1978).  
  11. R. Durán, L. Gastaldi and C. Padra, A posteriori error estimations for mixed approximation of eigenvalue problems. Math. Models Methods Appl. Sci.9 (1999) 1165–1178.  
  12. F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ist. lombardo Accd. Sci. Lett. Rend. A.138 (2004) 17–34.  
  13. F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interactions, Computational Fluid and Solid Mechanics. Elsevier, Amsterdam (2005).  
  14. F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ph.D. Thesis, Università degli Studi di Pavia, Pavia, Italy (2005).  
  15. P. Grisvard, Elliptic problem in nonsmooth domains, Monographs and Studies in Mathematics24. Pitman, Boston (1985).  
  16. J-.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Matheḿatiques17. Dunod, Paris (1968).  
  17. L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal.22 (1985) 493–496.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.