# Squares and cubes in Sturmian sequences

RAIRO - Theoretical Informatics and Applications (2009)

- Volume: 43, Issue: 3, page 615-624
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topDubickas, Artūras. "Squares and cubes in Sturmian sequences." RAIRO - Theoretical Informatics and Applications 43.3 (2009): 615-624. <http://eudml.org/doc/250615>.

@article{Dubickas2009,

abstract = {
We prove that every Sturmian word ω has infinitely many prefixes of
the form UnVn3, where |Un| < 2.855|Vn| and
limn→∞|Vn| = ∞. In passing, we give a very simple proof of the
known fact that every Sturmian word begins in arbitrarily long squares.
},

author = {Dubickas, Artūras},

journal = {RAIRO - Theoretical Informatics and Applications},

keywords = {Sturmian word; block-complexity; stammering word.; stammering word},

language = {eng},

month = {3},

number = {3},

pages = {615-624},

publisher = {EDP Sciences},

title = {Squares and cubes in Sturmian sequences},

url = {http://eudml.org/doc/250615},

volume = {43},

year = {2009},

}

TY - JOUR

AU - Dubickas, Artūras

TI - Squares and cubes in Sturmian sequences

JO - RAIRO - Theoretical Informatics and Applications

DA - 2009/3//

PB - EDP Sciences

VL - 43

IS - 3

SP - 615

EP - 624

AB -
We prove that every Sturmian word ω has infinitely many prefixes of
the form UnVn3, where |Un| < 2.855|Vn| and
limn→∞|Vn| = ∞. In passing, we give a very simple proof of the
known fact that every Sturmian word begins in arbitrarily long squares.

LA - eng

KW - Sturmian word; block-complexity; stammering word.; stammering word

UR - http://eudml.org/doc/250615

ER -

## References

top- B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansion in integer bases. Ann. Math.165 (2007) 547–565. Zbl1195.11094
- B. Adamczewski and Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation. Ergod. Theory Dyn. Syst.27 (2007) 1695–1711. Zbl1140.11035
- B. Adamczewski and N. Rampersad, On patterns occuring in binary algebraic numbers. Proc. Amer. Math. Soc.136 (2008) 3105–3109. Zbl1151.11036
- J.-P. Allouche, J.P. Davison, M. Queffélec and L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. J. Number Theory91 (2001) 39–66. Zbl0998.11036
- J.-P. Allouche and J. Shallit, Automatic sequences, Theory, applications, generalizations. CUP, Cambridge (2003). Zbl1086.11015
- J. Berstel, On the index of Sturmian words. In Jewels are Forever, Contributions on theoretical computer science in honor of Arto Salomaa, J. Karhumäki et al., eds. Springer, Berlin (1999) 287–294.
- J. Berstel and J. Karhumäki, Combinatorics on words – a tutorial, in Current trends in theoretical computer science, The challenge of the new century, Vol. 2, Formal models and semantics, G. Paun, G. Rozenberg, A. Salomaa, eds. World Scientific, River Edge, NJ (2004) 415–475. Zbl1065.68078
- V. Berthé, C. Holton and L.Q. Zamboni, Initial powers of Sturmian sequences. Acta Arith.122 (2006) 315–347. Zbl1117.37005
- J. Cassaigne, On extremal properties of the Fibonacci word. RAIRO-Theor. Inf. Appl.42 (2008) 701–715. Zbl1155.68062
- E. Coven and G. Hedlund, Sequences with minimal block growth. Math. Syst. Theor.7 (1973) 138–153. Zbl0256.54028
- J.D. Currie and N. Rampersad, For each α > 2 there is an infinite binary word with critical exponent α, Electron. J. Combin.15 (2008) 5 p. Zbl1183.68439
- A. De Luca, Sturmian words: structure, combinatorics and their arithmetics. Theoret. Comput. Sci.183 (1997) 45–82. Zbl0911.68098
- D. Damanik, R. Killip and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals, III. α-continuity. Commun. Math. Phys.212 (2000) 191–204. Zbl1045.81024
- A. Dubickas, Powers of a rational number modulo 1 cannot lie in a small interval (to appear). Zbl1245.11082
- S. Ferenczi and C. Mauduit, Transcendence of numbers with low complexity expansion. J. Number Theory67 (1997) 146–161. Zbl0895.11029
- A.S. Fraenkel, M. Mushkin and U. Tassa, Determination of [nθ] by its sequence of differences. Canad. Math. Bull.21 (1978) 441–446. Zbl0401.10018
- S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences. Jpn J. Math.16 (1990) 287–306. Zbl0721.11009
- J. Justin and L. Vuillon, Return words in Sturmian and episturmian words. RAIRO-Theor. Inf. Appl.34 (2000) 343–356. Zbl0987.68055
- D. Krieger and J. Shallit, Every real number greater than 1 is a critical exponent. Theoret. Comput. Sci.381 (2007) 177–182. Zbl1188.68216
- M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, Vol. 90. CUP, Cambridge (2002). Zbl1001.68093
- K. Mahler, An unsolved problem on the powers of 3/2. J. Austral. Math. Soc.8 (1968) 313–321. Zbl0155.09501
- F. Mignosi, On the number of factors of Sturmian words. Theoret. Comput. Sci.82 (1991) 71–84. Zbl0728.68093
- M. Morse and G.A. Hedlund, Symbolic dynamics II: Sturmian sequences. Amer. J. Math.62 (1940) 1–42. Zbl0022.34003
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math.1794 (2002). Zbl1014.11015
- K.B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull.19 (1976) 473–482. Zbl0359.10028
- D. Vandeth, Sturmian words and words with a critical exponent. Theoret. Comput. Sci.242 (2000) 283–300. Zbl0944.68148
- L. Vuillon, A characterization of Sturmian words by return words. Eur. J. Combin.22 (2001) 263–275. Zbl0968.68124

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.