Power of A Class of Goodness-of-Fit Tests I

Christopher S. Withers; Saralees Nadarajah

ESAIM: Probability and Statistics (2009)

  • Volume: 13, page 283-300
  • ISSN: 1292-8100

Abstract

top
Consider testing whether F = F0 for a continuous cdf on R = (-∞,∞) and for a random sample X1,..., Xn from F. We derive expansions of the associated asymptotic power based on the Cramer-von Mises, Kolmogorov-Smirnov and Kuiper statistics. We provide numerical illustrations using a double-exponential example with a shifted alternative.

How to cite

top

Withers, Christopher S., and Nadarajah, Saralees. "Power of A Class of Goodness-of-Fit Tests I." ESAIM: Probability and Statistics 13 (2009): 283-300. <http://eudml.org/doc/250631>.

@article{Withers2009,
abstract = { Consider testing whether F = F0 for a continuous cdf on R = (-∞,∞) and for a random sample X1,..., Xn from F. We derive expansions of the associated asymptotic power based on the Cramer-von Mises, Kolmogorov-Smirnov and Kuiper statistics. We provide numerical illustrations using a double-exponential example with a shifted alternative. },
author = {Withers, Christopher S., Nadarajah, Saralees},
journal = {ESAIM: Probability and Statistics},
keywords = {Asymptotic power; Brownian bridge; goodness-of-fit; Pitman efficiency; asymptotic power; pitman efficiency},
language = {eng},
month = {7},
pages = {283-300},
publisher = {EDP Sciences},
title = {Power of A Class of Goodness-of-Fit Tests I},
url = {http://eudml.org/doc/250631},
volume = {13},
year = {2009},
}

TY - JOUR
AU - Withers, Christopher S.
AU - Nadarajah, Saralees
TI - Power of A Class of Goodness-of-Fit Tests I
JO - ESAIM: Probability and Statistics
DA - 2009/7//
PB - EDP Sciences
VL - 13
SP - 283
EP - 300
AB - Consider testing whether F = F0 for a continuous cdf on R = (-∞,∞) and for a random sample X1,..., Xn from F. We derive expansions of the associated asymptotic power based on the Cramer-von Mises, Kolmogorov-Smirnov and Kuiper statistics. We provide numerical illustrations using a double-exponential example with a shifted alternative.
LA - eng
KW - Asymptotic power; Brownian bridge; goodness-of-fit; Pitman efficiency; asymptotic power; pitman efficiency
UR - http://eudml.org/doc/250631
ER -

References

top
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser.55. U.S. Government Printing Office, Washington, D.C. (1964).  
  2. J. Andel, Local asymptotic power and efficiency of tests of Kolmogorov-Smirnov type. Ann. Math. Statist.38 (1967) 1705–1725.  
  3. T.W. Anderson and D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Statist.23 (1952) 193–212.  
  4. R. Courant and D. Hilbert, Methods of Mathematical Physics, volume I. Interscience Publishers, Inc., New York (1953).  
  5. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, volume II. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1981).  
  6. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, sixth edition. Academic Press, San Diego (2000).  
  7. J. Hajek and Z. Sidak, Theory of Rank Tests. Academic Press, Inc., New York (1967).  
  8. A. Janssen, Principal component decomposition of non-parametric tests. Probab. Theory Related Fields101 (1995) 193–209.  
  9. A. Janssen, Global power functions of goodness of fit tests. Ann. Statist.28 (2000) 239–253.  
  10. A. Janssen and F. Marohn, On statistical information of extreme order statistics, local extreme value alternatives, and Poisson point processes. J. Multiv. Anal.48 (1994) 1–30.  
  11. C. Jordan, Calculus of Finite Differences, third edition. Chelsea Publishing Co., New York (1965).  
  12. A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Statist.12 (1941) 461–463.  
  13. E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, third edition. Springer, New York (2005).  
  14. H. Milbrodt and H. Strasser, On the asymptotic power of the two-sides Kolmogorov-Smirnov. J. Statist. Plann. Inference26 (1990) 1–23.  
  15. E.S. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, volume II. Cambridge University Press, New York (1972).  
  16. D. Quade, On the asymptotic power of the one-sample Kolmogorov-Smirnov Tests. Ann. Math. Statist.36 (1965) 1000–1018.  
  17. J. Rahnenführer, On preferences of general two-sided tests with applications to Kolmogorov Smirnov-type tests. Statist. Decisions21 (2003) 149–170.  
  18. S. Shapiro and M. Wilk, An analysis of variance test for normality. Biometrika52 (1965) 591–611.  
  19. G.R. Shorak and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986).  
  20. G.P. Steck, Rectangle probabilities for uniform order statistics. Ann. Math. Statist.42 (1971) 1–11.  
  21. M.A. Stephens, The goodness-of-fit statistic VN: Distribution and significance points. Biometrika52 (1965) 309–321.  
  22. M.A. Stephens, Tests for normality. Technical Report No. 152, November 10, 1969, Department of Statistics, Stanford University (1969).  
  23. M.A. Stephens, Kolmogorov type tests for exponentiality. Technical Report No. 154, Department of Statistics, Stanford University (1970).  
  24. H. Strasser, Global extrapolations of local efficiency. Statist. Decisions8 (1990) 11–26.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.