Power of A Class of Goodness-of-Fit Tests I
Christopher S. Withers; Saralees Nadarajah
ESAIM: Probability and Statistics (2009)
- Volume: 13, page 283-300
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topWithers, Christopher S., and Nadarajah, Saralees. "Power of A Class of Goodness-of-Fit Tests I." ESAIM: Probability and Statistics 13 (2009): 283-300. <http://eudml.org/doc/250631>.
@article{Withers2009,
	abstract = {
Consider testing whether F = F0 for a continuous cdf on R = (-∞,∞)
and for a random sample X1,..., Xn from F.
We derive expansions of the associated asymptotic power based
on the Cramer-von Mises, Kolmogorov-Smirnov and Kuiper statistics. We provide numerical illustrations using a double-exponential example with a shifted alternative. 
},
	author = {Withers, Christopher S., Nadarajah, Saralees},
	journal = {ESAIM: Probability and Statistics},
	keywords = {Asymptotic power; Brownian bridge; goodness-of-fit; Pitman efficiency; asymptotic power; pitman efficiency},
	language = {eng},
	month = {7},
	pages = {283-300},
	publisher = {EDP Sciences},
	title = {Power of A Class of Goodness-of-Fit Tests I},
	url = {http://eudml.org/doc/250631},
	volume = {13},
	year = {2009},
}
TY  - JOUR
AU  - Withers, Christopher S.
AU  - Nadarajah, Saralees
TI  - Power of A Class of Goodness-of-Fit Tests I
JO  - ESAIM: Probability and Statistics
DA  - 2009/7//
PB  - EDP Sciences
VL  - 13
SP  - 283
EP  - 300
AB  - 
Consider testing whether F = F0 for a continuous cdf on R = (-∞,∞)
and for a random sample X1,..., Xn from F.
We derive expansions of the associated asymptotic power based
on the Cramer-von Mises, Kolmogorov-Smirnov and Kuiper statistics. We provide numerical illustrations using a double-exponential example with a shifted alternative. 
LA  - eng
KW  - Asymptotic power; Brownian bridge; goodness-of-fit; Pitman efficiency; asymptotic power; pitman efficiency
UR  - http://eudml.org/doc/250631
ER  - 
References
top- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser.55. U.S. Government Printing Office, Washington, D.C. (1964).
- J. Andel, Local asymptotic power and efficiency of tests of Kolmogorov-Smirnov type. Ann. Math. Statist.38 (1967) 1705–1725.
- T.W. Anderson and D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Statist.23 (1952) 193–212.
- R. Courant and D. Hilbert, Methods of Mathematical Physics, volume I. Interscience Publishers, Inc., New York (1953).
- A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, volume II. Robert E. Krieger Publishing Co., Inc., Melbourne, FL (1981).
- I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, sixth edition. Academic Press, San Diego (2000).
- J. Hajek and Z. Sidak, Theory of Rank Tests. Academic Press, Inc., New York (1967).
- A. Janssen, Principal component decomposition of non-parametric tests. Probab. Theory Related Fields101 (1995) 193–209.
- A. Janssen, Global power functions of goodness of fit tests. Ann. Statist.28 (2000) 239–253.
- A. Janssen and F. Marohn, On statistical information of extreme order statistics, local extreme value alternatives, and Poisson point processes. J. Multiv. Anal.48 (1994) 1–30.
- C. Jordan, Calculus of Finite Differences, third edition. Chelsea Publishing Co., New York (1965).
- A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Statist.12 (1941) 461–463.
- E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, third edition. Springer, New York (2005).
- H. Milbrodt and H. Strasser, On the asymptotic power of the two-sides Kolmogorov-Smirnov. J. Statist. Plann. Inference26 (1990) 1–23.
- E.S. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, volume II. Cambridge University Press, New York (1972).
- D. Quade, On the asymptotic power of the one-sample Kolmogorov-Smirnov Tests. Ann. Math. Statist.36 (1965) 1000–1018.
- J. Rahnenführer, On preferences of general two-sided tests with applications to Kolmogorov Smirnov-type tests. Statist. Decisions21 (2003) 149–170.
- S. Shapiro and M. Wilk, An analysis of variance test for normality. Biometrika52 (1965) 591–611.
- G.R. Shorak and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986).
- G.P. Steck, Rectangle probabilities for uniform order statistics. Ann. Math. Statist.42 (1971) 1–11.
- M.A. Stephens, The goodness-of-fit statistic VN: Distribution and significance points. Biometrika52 (1965) 309–321.
- M.A. Stephens, Tests for normality. Technical Report No. 152, November 10, 1969, Department of Statistics, Stanford University (1969).
- M.A. Stephens, Kolmogorov type tests for exponentiality. Technical Report No. 154, Department of Statistics, Stanford University (1970).
- H. Strasser, Global extrapolations of local efficiency. Statist. Decisions8 (1990) 11–26.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 