Penalisations of multidimensional Brownian motion, VI
Bernard Roynette; Pierre Vallois; Marc Yor
ESAIM: Probability and Statistics (2009)
- Volume: 13, page 152-180
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topRoynette, Bernard, Vallois, Pierre, and Yor, Marc. "Penalisations of multidimensional Brownian motion, VI." ESAIM: Probability and Statistics 13 (2009): 152-180. <http://eudml.org/doc/250673>.
@article{Roynette2009,
abstract = {
As in preceding papers in
which we studied the limits of penalized 1-dimensional Wiener
measures with certain functionals Γt, we obtain here the
existence of the limit, as t → ∞, of d-dimensional Wiener
measures penalized by a function of the maximum up to time t of
the Brownian winding process (for d = 2), or in \{d\}≥ 2
dimensions for Brownian motion
prevented to exit a cone before time t.
Various extensions of these multidimensional penalisations are
studied, and the limit laws are described.
Throughout this paper, the skew-product decomposition of
d-dimensional Brownian motion plays an important role.
},
author = {Roynette, Bernard, Vallois, Pierre, Yor, Marc},
journal = {ESAIM: Probability and Statistics},
keywords = {Skew-product
decomposition; Brownian windings; Dirichlet problem; spectral
decomposition; skew-product decomposition; spectral decomposition},
language = {eng},
month = {6},
pages = {152-180},
publisher = {EDP Sciences},
title = {Penalisations of multidimensional Brownian motion, VI},
url = {http://eudml.org/doc/250673},
volume = {13},
year = {2009},
}
TY - JOUR
AU - Roynette, Bernard
AU - Vallois, Pierre
AU - Yor, Marc
TI - Penalisations of multidimensional Brownian motion, VI
JO - ESAIM: Probability and Statistics
DA - 2009/6//
PB - EDP Sciences
VL - 13
SP - 152
EP - 180
AB -
As in preceding papers in
which we studied the limits of penalized 1-dimensional Wiener
measures with certain functionals Γt, we obtain here the
existence of the limit, as t → ∞, of d-dimensional Wiener
measures penalized by a function of the maximum up to time t of
the Brownian winding process (for d = 2), or in {d}≥ 2
dimensions for Brownian motion
prevented to exit a cone before time t.
Various extensions of these multidimensional penalisations are
studied, and the limit laws are described.
Throughout this paper, the skew-product decomposition of
d-dimensional Brownian motion plays an important role.
LA - eng
KW - Skew-product
decomposition; Brownian windings; Dirichlet problem; spectral
decomposition; skew-product decomposition; spectral decomposition
UR - http://eudml.org/doc/250673
ER -
References
top- M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne. Lect. Notes Math.194. Springer-Verlag, Berlin (1971).
- R. Durrett, A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion. Ann. Probab.10 (1982) 244–246.
- I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition (1991).
- N.N. Lebedev, Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, unabridged and corrected republication.
- P.A. Meyer, Probabilités et potentiel. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles, No. 1318. Hermann, Paris (1966).
- G. Pap and M. Yor, The accuracy of Cauchy approximation for the windings of planar Brownian motion. Period. Math. Hungar.41 (2000) 213–226.
- J. Pitman and M. Yor, Asymptotic laws of planar Brownian motion. Ann. Probab.14 (1986) 733–779.
- J. Pitman and M. Yor, Further asymptotic laws of planar Brownian motion. Ann. Probab.17 (1989) 965–1011.
- D. Revuz and M. Yor, Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition (1999).
- B. Roynette and M. Yor, Penalising Brownian paths. Lect. Notes Math.1969. Springer-Verlag, Berlin (2009).
- B. Roynette, P. Vallois and M. Yor, Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III. Period. Math. Hungar.50 (2005) 247–280.
- B. Roynette, P. Vallois and M. Yor. Limiting laws associated with Brownian motion perturbed by normalized exponential weights I. Studia Sci. Math. Hungar.43 (2006) 171–246.
- B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II. Studia Sci. Math. Hungar.43 (2006) 295–360.
- B. Roynette, P. Vallois and M. Yor, Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère. In Séminaire de Probabilités, XXXIX (P.A. Meyer, in memoriam). Lect. Notes Math.1874. Springer, Berlin (2006) 305–336.
- B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure. Japan. J. Math.1 (2006) 263–290.
- B. Roynette, P. Vallois and M. Yor, Some extensions of Pitman's and Ray-Knight's theorems for penalized Brownian motions and their local times, IV. Studia Sci. Math. Hungar.44 (2007) 469–516.
- B. Roynette, P. Vallois and M. Yor, Penalizing a Bes(d) process (0 < d < 2) with a function of its local time at 0, V. Studia Sci. Math. Hungar.45 (2008) 67–124.
- B. Roynette, P. Vallois and M. Yor, Penalizing a Brownian motion with a function of the lengths of its excursions, VII. Ann. Inst. H. Poincaré Probab. Statist.45 (2009) 421–452.
- F. Spitzer, Some theorems concerning 2-dimensional Brownian motion. Trans. Am. Math. Soc.87 (1958) 187–197.
- D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Classics in Mathematics. Springer-Verlag, Berlin, (2006). Reprint of the 1997 edition.
- S. Watanabe, On time inversion of 1-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete31 (1974/75) 115–124.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.