Strong convergence of an iterative method for variational inequality problems and fixed point problems

Xiao Long Qin; Shin Min Kang; Yong Fu Su; Mei Juan Shang

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 2, page 147-158
  • ISSN: 0044-8753

Abstract

top
In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.

How to cite

top

Qin, Xiao Long, et al. "Strong convergence of an iterative method for variational inequality problems and fixed point problems." Archivum Mathematicum 045.2 (2009): 147-158. <http://eudml.org/doc/250682>.

@article{Qin2009,
abstract = {In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.},
author = {Qin, Xiao Long, Kang, Shin Min, Su, Yong Fu, Shang, Mei Juan},
journal = {Archivum Mathematicum},
keywords = {nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; viscosity approximation method; strong convergence},
language = {eng},
number = {2},
pages = {147-158},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Strong convergence of an iterative method for variational inequality problems and fixed point problems},
url = {http://eudml.org/doc/250682},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Qin, Xiao Long
AU - Kang, Shin Min
AU - Su, Yong Fu
AU - Shang, Mei Juan
TI - Strong convergence of an iterative method for variational inequality problems and fixed point problems
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 147
EP - 158
AB - In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.
LA - eng
KW - nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; viscosity approximation method; strong convergence
UR - http://eudml.org/doc/250682
ER -

References

top
  1. Browder, F. E., 10.1073/pnas.53.6.1272, Proc. Natl. Acad. Sci. USA 53 (1965), 1272–1276. (1965) MR0178324DOI10.1073/pnas.53.6.1272
  2. Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math. 18 (1976), 78–81. (1976) Zbl0327.47022MR0405188
  3. Bruck, R. E., 10.1090/S0002-9947-1973-0324491-8, Trans. Amer. Math. Soc. 179 (1973), 251–262. (1973) Zbl0265.47043MR0324491DOI10.1090/S0002-9947-1973-0324491-8
  4. Ceng, L. C., Wang, C. Y., Yao, J. C., 10.1007/s00186-007-0207-4, Math. Methods Oper. Res. 67 (2008), 375–390. (2008) Zbl1147.49007MR2403714DOI10.1007/s00186-007-0207-4
  5. Ceng, L. C., Yao, J. C., 10.1016/j.amc.2007.01.021, Appl. Math. Comput. 190 (2007), 205–215. (2007) Zbl1124.65056MR2335441DOI10.1016/j.amc.2007.01.021
  6. Chen, J. M., Zhang, L. J., Fan, T. G., 10.1016/j.jmaa.2006.12.088, J. Math. Anal. Appl. 334 (2007), 1450–1461. (2007) Zbl1137.47307MR2338673DOI10.1016/j.jmaa.2006.12.088
  7. Gabay, D., Applications of the Method of Multipliers to Variational Inequalities, Augmented Lagrangian Methods, North-Holland, Amsterdam. 
  8. Iiduka, H., Takahashi, W., 10.1016/j.na.2003.07.023, Nonlinear Anal. 61 (2005), 341–350. (2005) Zbl1093.47058MR2123081DOI10.1016/j.na.2003.07.023
  9. Korpelevich, G. M., An extragradient method for finding saddle points and for other problems, Ekonomika i matematicheskie metody 12 (1976), 747–756. (1976) MR0451121
  10. Moudafi, A., Viscosity approximation methods for fixed points problems, Appl. Math. Comput. 241 (2000), 46–55. (2000) Zbl0957.47039MR1738332
  11. Nadezhkina, N., Takahashi, W., 10.1007/s10957-005-7564-z, J. Optim. Theory Appl. 128 (2006), 191–201. (2006) Zbl1130.90055MR2201895DOI10.1007/s10957-005-7564-z
  12. Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199–277. (2004) Zbl1134.49304MR2050063
  13. Noor, M. A., Yao, Y., 10.1016/j.amc.2007.02.013, Appl. Math. Comput. 190 (2007), 1312–1321. (2007) Zbl1128.65051MR2339724DOI10.1016/j.amc.2007.02.013
  14. Qin, X., Shang, M., Su, Y., 10.1016/j.mcm.2007.12.008, Math. Comput. Modelling 48 (2008), 1033–1046. (2008) Zbl1187.65058MR2458216DOI10.1016/j.mcm.2007.12.008
  15. Qin, X., Shang, M., Zhou, H., 10.1016/j.amc.2007.11.004, Appl. Math. Comput. 200 (2008), 242–253. (2008) Zbl1147.65048MR2421640DOI10.1016/j.amc.2007.11.004
  16. Stampacchia, G., ormes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 4413–4416. (1964) MR0166591
  17. Suzuki, T., 10.1016/j.jmaa.2004.11.017, J. Math. Anal. Appl. 305 (2005), 227–239. (2005) MR2128124DOI10.1016/j.jmaa.2004.11.017
  18. Takahashi, W., Toyoda, M., 10.1023/A:1025407607560, J. Optim. Theory Appl. 118 (2003), 417–428. (2003) Zbl1055.47052MR2006529DOI10.1023/A:1025407607560
  19. Verma, R. U., 10.1023/B:JOTA.0000026271.19947.05, J. Optim. Theory Appl. 121 (2004), 203–210. (2004) MR2062977DOI10.1023/B:JOTA.0000026271.19947.05
  20. Verma, R. U., 10.1016/j.aml.2005.02.026, Appl. Math. Lett. 18 (2005), 1286–1292. (2005) MR2170885DOI10.1016/j.aml.2005.02.026
  21. Xu, H. K., 10.1112/S0024610702003332, J. London Math. Soc. 66 (2002), 240–256. (2002) Zbl1013.47032MR1911872DOI10.1112/S0024610702003332
  22. Yao, Y., Yao, J. C., 10.1016/j.amc.2006.08.062, Appl. Math. Comput. 186 (2007), 1551–1558. (2007) Zbl1121.65064MR2316950DOI10.1016/j.amc.2006.08.062
  23. Zhou, H., 10.1016/j.na.2007.05.032, Nonlinear Anal. 69 (2008), 456–462. (2008) MR2426262DOI10.1016/j.na.2007.05.032
  24. Zhou, H., 10.1016/j.jmaa.2008.01.045, J. Math. Anal. Appl. 343 (2008), 546–556. (2008) Zbl1140.47058MR2412149DOI10.1016/j.jmaa.2008.01.045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.