Strong convergence of an iterative method for variational inequality problems and fixed point problems
Xiao Long Qin; Shin Min Kang; Yong Fu Su; Mei Juan Shang
Archivum Mathematicum (2009)
- Volume: 045, Issue: 2, page 147-158
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topQin, Xiao Long, et al. "Strong convergence of an iterative method for variational inequality problems and fixed point problems." Archivum Mathematicum 045.2 (2009): 147-158. <http://eudml.org/doc/250682>.
@article{Qin2009,
abstract = {In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.},
author = {Qin, Xiao Long, Kang, Shin Min, Su, Yong Fu, Shang, Mei Juan},
journal = {Archivum Mathematicum},
keywords = {nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; viscosity approximation method; strong convergence},
language = {eng},
number = {2},
pages = {147-158},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Strong convergence of an iterative method for variational inequality problems and fixed point problems},
url = {http://eudml.org/doc/250682},
volume = {045},
year = {2009},
}
TY - JOUR
AU - Qin, Xiao Long
AU - Kang, Shin Min
AU - Su, Yong Fu
AU - Shang, Mei Juan
TI - Strong convergence of an iterative method for variational inequality problems and fixed point problems
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 2
SP - 147
EP - 158
AB - In this paper, we introduce a general iterative scheme to investigate the problem of finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Strong convergence theorems are established in a real Hilbert space.
LA - eng
KW - nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping; viscosity approximation method; strong convergence
UR - http://eudml.org/doc/250682
ER -
References
top- Browder, F. E., 10.1073/pnas.53.6.1272, Proc. Natl. Acad. Sci. USA 53 (1965), 1272–1276. (1965) MR0178324DOI10.1073/pnas.53.6.1272
- Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math. 18 (1976), 78–81. (1976) Zbl0327.47022MR0405188
- Bruck, R. E., 10.1090/S0002-9947-1973-0324491-8, Trans. Amer. Math. Soc. 179 (1973), 251–262. (1973) Zbl0265.47043MR0324491DOI10.1090/S0002-9947-1973-0324491-8
- Ceng, L. C., Wang, C. Y., Yao, J. C., 10.1007/s00186-007-0207-4, Math. Methods Oper. Res. 67 (2008), 375–390. (2008) Zbl1147.49007MR2403714DOI10.1007/s00186-007-0207-4
- Ceng, L. C., Yao, J. C., 10.1016/j.amc.2007.01.021, Appl. Math. Comput. 190 (2007), 205–215. (2007) Zbl1124.65056MR2335441DOI10.1016/j.amc.2007.01.021
- Chen, J. M., Zhang, L. J., Fan, T. G., 10.1016/j.jmaa.2006.12.088, J. Math. Anal. Appl. 334 (2007), 1450–1461. (2007) Zbl1137.47307MR2338673DOI10.1016/j.jmaa.2006.12.088
- Gabay, D., Applications of the Method of Multipliers to Variational Inequalities, Augmented Lagrangian Methods, North-Holland, Amsterdam.
- Iiduka, H., Takahashi, W., 10.1016/j.na.2003.07.023, Nonlinear Anal. 61 (2005), 341–350. (2005) Zbl1093.47058MR2123081DOI10.1016/j.na.2003.07.023
- Korpelevich, G. M., An extragradient method for finding saddle points and for other problems, Ekonomika i matematicheskie metody 12 (1976), 747–756. (1976) MR0451121
- Moudafi, A., Viscosity approximation methods for fixed points problems, Appl. Math. Comput. 241 (2000), 46–55. (2000) Zbl0957.47039MR1738332
- Nadezhkina, N., Takahashi, W., 10.1007/s10957-005-7564-z, J. Optim. Theory Appl. 128 (2006), 191–201. (2006) Zbl1130.90055MR2201895DOI10.1007/s10957-005-7564-z
- Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199–277. (2004) Zbl1134.49304MR2050063
- Noor, M. A., Yao, Y., 10.1016/j.amc.2007.02.013, Appl. Math. Comput. 190 (2007), 1312–1321. (2007) Zbl1128.65051MR2339724DOI10.1016/j.amc.2007.02.013
- Qin, X., Shang, M., Su, Y., 10.1016/j.mcm.2007.12.008, Math. Comput. Modelling 48 (2008), 1033–1046. (2008) Zbl1187.65058MR2458216DOI10.1016/j.mcm.2007.12.008
- Qin, X., Shang, M., Zhou, H., 10.1016/j.amc.2007.11.004, Appl. Math. Comput. 200 (2008), 242–253. (2008) Zbl1147.65048MR2421640DOI10.1016/j.amc.2007.11.004
- Stampacchia, G., ormes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 4413–4416. (1964) MR0166591
- Suzuki, T., 10.1016/j.jmaa.2004.11.017, J. Math. Anal. Appl. 305 (2005), 227–239. (2005) MR2128124DOI10.1016/j.jmaa.2004.11.017
- Takahashi, W., Toyoda, M., 10.1023/A:1025407607560, J. Optim. Theory Appl. 118 (2003), 417–428. (2003) Zbl1055.47052MR2006529DOI10.1023/A:1025407607560
- Verma, R. U., 10.1023/B:JOTA.0000026271.19947.05, J. Optim. Theory Appl. 121 (2004), 203–210. (2004) MR2062977DOI10.1023/B:JOTA.0000026271.19947.05
- Verma, R. U., 10.1016/j.aml.2005.02.026, Appl. Math. Lett. 18 (2005), 1286–1292. (2005) MR2170885DOI10.1016/j.aml.2005.02.026
- Xu, H. K., 10.1112/S0024610702003332, J. London Math. Soc. 66 (2002), 240–256. (2002) Zbl1013.47032MR1911872DOI10.1112/S0024610702003332
- Yao, Y., Yao, J. C., 10.1016/j.amc.2006.08.062, Appl. Math. Comput. 186 (2007), 1551–1558. (2007) Zbl1121.65064MR2316950DOI10.1016/j.amc.2006.08.062
- Zhou, H., 10.1016/j.na.2007.05.032, Nonlinear Anal. 69 (2008), 456–462. (2008) MR2426262DOI10.1016/j.na.2007.05.032
- Zhou, H., 10.1016/j.jmaa.2008.01.045, J. Math. Anal. Appl. 343 (2008), 546–556. (2008) Zbl1140.47058MR2412149DOI10.1016/j.jmaa.2008.01.045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.