Several q -series identities from the Euler expansions of ( a ; q ) and 1 ( a ; q )

Zhizheng Zhang; Yang, Jizhen

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 1, page 47-58
  • ISSN: 0044-8753

Abstract

top
In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two q -series identities obtained by the Euler expansions of ( a ; q ) and 1 ( a ; q ) . Several q -series identities are obtained involving a q -series identity in Ramanujan’s Lost Notebook.

How to cite

top

Zhang, Zhizheng, and Yang, Jizhen. "Several $q$-series identities from the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$." Archivum Mathematicum 045.1 (2009): 47-58. <http://eudml.org/doc/250685>.

@article{Zhang2009,
abstract = {In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two $q$-series identities obtained by the Euler expansions of $(a;q)_\{\infty \}$ and $\frac\{1\}\{(a;q)_\{\infty \}\}$. Several $q$-series identities are obtained involving a $q$-series identity in Ramanujan’s Lost Notebook.},
author = {Zhang, Zhizheng, Yang, Jizhen},
journal = {Archivum Mathematicum},
keywords = {exponential operator; operator identity; $q$-series identity; exponential operator; operator identity; -series identity},
language = {eng},
number = {1},
pages = {47-58},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Several $q$-series identities from the Euler expansions of $(a;q)_\{\infty \}$ and $\frac\{1\}\{(a;q)_\{\infty \}\}$},
url = {http://eudml.org/doc/250685},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Zhang, Zhizheng
AU - Yang, Jizhen
TI - Several $q$-series identities from the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 1
SP - 47
EP - 58
AB - In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two $q$-series identities obtained by the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$. Several $q$-series identities are obtained involving a $q$-series identity in Ramanujan’s Lost Notebook.
LA - eng
KW - exponential operator; operator identity; $q$-series identity; exponential operator; operator identity; -series identity
UR - http://eudml.org/doc/250685
ER -

References

top
  1. Andrews, G. E., 10.1016/0001-8708(81)90013-X, Adv. Math. 41 (1981), 137–172. (1981) DOI10.1016/0001-8708(81)90013-X
  2. Andrews, G. E., Ramanujan: Essays and Surveys, ch. An introduction to Ramanujan's “Lost” Notebook, pp. 165–184, 2001. (2001) 
  3. Andrews, G. E., Askey, R., Roy, R., Special Function, Cambridge University Press, Cambridge, 1999. (1999) 
  4. Chen, W. Y. C., Liu, Z.-G., 10.1006/jcta.1997.2801, J. Combin. Theory Ser. A 80 (1997), 175–195. (1997) Zbl0901.33009MR1485133DOI10.1006/jcta.1997.2801
  5. Chen, W. Y. C., Liu, Z.-G., Mathematical essays in honor of Gian-Carlo Rota, ch. Parameter augmentation for basic hypergeometric series, I, pp. 111–129, Birkhäuser, Basel, 1998. (1998) MR1627355
  6. Gasper, G. G., Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, Second edition, vol. 96, Cambridge University Press, 2004. (2004) Zbl1129.33005MR2128719
  7. Liu, Z.-G., A new proof of the Nassrallah-Rahman integral, Acta Math. Sinica 41 (2) (1998), 405–410. (1998) Zbl1010.33009MR1656510
  8. Liu, Z.-G., 10.1016/S0012-365X(02)00626-X, Discrete Math. 265 (2003), 119–139. (2003) Zbl1021.05010MR1969370DOI10.1016/S0012-365X(02)00626-X
  9. Rogers, L. J., On the expansion of some infinite products, Proc. London Math. Soc. 24 (1893), 337–352. (1893) 
  10. Rogers, L. J., Second Memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318–343. (1894) 
  11. Rogers, L. J., Third Memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1896), 15–32. (1896) 
  12. Roman, S., 10.1016/0022-247X(85)90367-1, J. Math. Anal. Appl. 107 (1985), 222–254. (1985) Zbl0654.05004MR0786026DOI10.1016/0022-247X(85)90367-1
  13. Zhang, Z. Z., Liu, M. X., 10.1016/j.disc.2006.01.025, Discrete Math. 306 (2006), 1424–1437. (2006) Zbl1095.05002MR2237725DOI10.1016/j.disc.2006.01.025
  14. Zhang, Z. Z., Wang, J., 10.1016/j.jmaa.2005.03.064, J. Math. Anal. Appl. 312 (2) (2005), 653–665. (2005) Zbl1081.33032MR2179103DOI10.1016/j.jmaa.2005.03.064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.