Homogenization of monotone systems of Hamilton-Jacobi equations
Fabio Camilli; Olivier Ley; Paola Loreti
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 1, page 58-76
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal.170 (2003) 17–61.
- M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997).
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris, France (1994).
- G. Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations. Calc. Var. Partial Differential Equations30 (2007) 449–466.
- G. Barles, S. Biton and O. Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal.162 (2002) 287–325.
- F. Camilli and P. Loreti, Comparison results for a class of weakly coupled systems of eikonal equations. Hokkaido Math. J.37 (2008) 349–362.
- I. Capuzzo-Dolcetta and H. Ishii, On the rate of convergence in homogenization of Hamilton-Jacobi equations. Indiana Univ. Math. J.50 (2001) 1113–1129.
- M.C. Concordel, Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula. Indiana Univ. Math. J.45 (1996) 1095–1117.
- A. Eizenberg and M. Freidlin, On the Dirichlet problem for a class of second order PDE systems with small parameter. Stochastics Stochastics Rep.33 (1990) 111–148.
- H. Engler and S.M. Lenhart, Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations. Proc. London Math. Soc. (3)63 (1991) 212–240.
- L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A111 (1989) 359–375
- H. Ishii, Perron's method for monotone systems of second-order elliptic partial differential equations. Differential Integral Equations5 (1992) 1–24.
- H. Ishii and S. Koike, Remarks on elliptic singular perturbation problems. Appl. Math. Optim.23 (1991) 1–15.
- H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs. Comm. Partial Differential Equations16 (1991) 1095–1128.
- P.-L. Lions and P.E. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math.56 (2003) 1501–1524.
- P.-L. Lions, B. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations. Preprint (1986).
- K. Shimano, Homogenization and penalization of functional first-order PDE. NoDEA Nonlinear Differ. Equ. Appl.13 (2006) 1–21.