Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory
Guillaume Carlier; Rabah Tahraoui
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 3, page 744-763
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCarlier, Guillaume, and Tahraoui, Rabah. "Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory." ESAIM: Control, Optimisation and Calculus of Variations 16.3 (2010): 744-763. <http://eudml.org/doc/250723>.
@article{Carlier2010,
abstract = {
This article is devoted to the optimal control of state equations with memory of the form:
$\dot\{x\}(t)=F(x(t),u(t), \int_0^\{+\infty\} A(s) x(t-s) \{\rm d\}s), \; t>0,$with initial conditions $x(0)=x, \; x(-s)=z(s), s>0$.
Denoting by $y_\{x, z, u\}$ the solution of the previous Cauchy problem and:$
v(x,z):=\inf_\{u\in V\} \lbrace \int_0^\{+\infty\} \{\rm e\}^\{-\lambda s \} L(y_\{x,z,u\}(s), u(s))\{\rm d\}s\rbrace
$
where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form:$
\lambda v(x,z)+H(x,z,\nabla_x v(x,z))+\langle D_z v(x,z), \dot\{z\} \rangle=0
$
in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.
},
author = {Carlier, Guillaume, Tahraoui, Rabah},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Dynamic programming; state equations with memory; viscosity solutions; Hamilton-Jacobi-Bellman equations in infinite dimensions; dynamic programming},
language = {eng},
month = {7},
number = {3},
pages = {744-763},
publisher = {EDP Sciences},
title = {Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory},
url = {http://eudml.org/doc/250723},
volume = {16},
year = {2010},
}
TY - JOUR
AU - Carlier, Guillaume
AU - Tahraoui, Rabah
TI - Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/7//
PB - EDP Sciences
VL - 16
IS - 3
SP - 744
EP - 763
AB -
This article is devoted to the optimal control of state equations with memory of the form:
$\dot{x}(t)=F(x(t),u(t), \int_0^{+\infty} A(s) x(t-s) {\rm d}s), \; t>0,$with initial conditions $x(0)=x, \; x(-s)=z(s), s>0$.
Denoting by $y_{x, z, u}$ the solution of the previous Cauchy problem and:$
v(x,z):=\inf_{u\in V} \lbrace \int_0^{+\infty} {\rm e}^{-\lambda s } L(y_{x,z,u}(s), u(s)){\rm d}s\rbrace
$
where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form:$
\lambda v(x,z)+H(x,z,\nabla_x v(x,z))+\langle D_z v(x,z), \dot{z} \rangle=0
$
in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.
LA - eng
KW - Dynamic programming; state equations with memory; viscosity solutions; Hamilton-Jacobi-Bellman equations in infinite dimensions; dynamic programming
UR - http://eudml.org/doc/250723
ER -
References
top- C.T.H. Baker, G.A. Bocharov and F.A. Rihan, A Report on the Use of Delay Differential Equations in Numerical Modelling in the Biosciences. Technical report, Manchester Centre for Computational Mathematics, UK (1999).
- A. Bensoussan, G. Da Prato, M. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems. Second Edition, Birkhäuser (2007).
- M. Bardi and I.C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997).
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathematics and Applications17. Springer-Verlag, Paris (1994).
- R. Boucekkine, O. Licandro, L. Puch and F. del Rio, Vintage capital and the dynamics of the AK model. J. Econ. Theory120 (2005) 39–72.
- H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983).
- G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory. ESAIM: COCV14 (2008) 725–743.
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal.62 (1985) 379–396.
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal.65 (1986) 368–405.
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. III. J. Funct. Anal.68 (1986) 214–247.
- M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal.90 (1990) 237–283.
- M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions. J. Funct. Anal.97 (1991) 417–465.
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and Tataru's method refined, in Evolution equations, control theory, and biomathematics, Lect. Notes Pure Appl. Math.155, Dekker, New York (1994) 51–89.
- I. Elsanosi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay. Stochast. Stochast. Rep.71 (2000) 69–89.
- G. Fabbri, Viscosity solutions to delay differential equations in demo-economy. Math. Popul. Stud.15 (2008) 27–54.
- G. Fabbri, S. Faggian and F. Gozzi, On dynamic programming in economic models governed by DDEs. Math. Popul. Stud.15 (2008) 267–290.
- S. Faggian and F. Gozzi, On the dynamic programming approach for optimal control problems of PDE's with age structure. Math. Popul. Stud.11 (2004) 233–270.
- F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, in Stochastic partial differential equations and applicationsVII, Chapman & Hall, Boca Raton, Lect. Notes Pure Appl. Math.245 (2006) 133–148.
- V.B. Kolmanovskii and L.E. Shaikhet, Control of systems with aftereffect, Translations of Mathematical Monographs. American Mathematical Society, Providence, USA (1996).
- B. Larssen and N.H. Risebro, When are HJB-equations in stochastic control of delay systems finite dimensional? Stochastic Anal. Appl.21 (2003) 643–671.
- L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés ? C. R. Math. Acad. Sci. Paris338 (2004) 611–616.
- L. Samassi and R. Tahraoui, How to state necessary optimality conditions for control problems with deviating arguments? ESAIM: COCV14 (2008) 381–409.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.