Kernel-function Based Primal-Dual Algorithms for P*(κ) Linear Complementarity Problems
RAIRO - Operations Research (2010)
- Volume: 44, Issue: 3, page 185-205
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y.Q. Bai, M. El Ghami and C. Roos, A new efficient large-update primal-dual interior-point method based on a finite barrier. SIAM J. Opt.13 (2003) 766–782.
- Y.Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization. SIAM J. Opt.15 (2004) 101–128.
- E.M. Cho, Log-barrier method for two-stagequadratic stochastic programming. Appl. Math. Comput.164 (2005) 45–69.
- Gyeong-Mi Cho and Min-Kyung Kim, A new Large-update interior point algorithm for P*(κ) LCPs Based on kernel functions. Appl. Math. Comput.182 (2006) 1169–1183.
- R. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, Boston (1992).
- M. El Ghami, Y.Q. Bai and C. Roos, Kernel Function Based Algorithms for Semidefinite Optimization. Int. J. RAIRO-Oper. Res.43 (2009) 189–199.
- T. Illés and M. Nagy, The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem. Alkalmaz. Mat. Lapok22 (2005) 41–61.
- M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: Progress in Mathematical Programming; Interior Point Related Methods,10, edited by N. Megiddo. Springer Verlag, New York (1989) pp. 29–47.
- M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, Lect. Notes Comput. Sci.538 (1991).
- J. Miao, A quadratically convergent o(1+k)-iteration algorithm for the P*(k)-matrix linear complementarity problem. Math. Program.69 (1995) 355–368.
- R.D.C. Monteiro and I. Adler, Interior path following primal-dual algorithms. Part I: Linear programming. Math. Program.44 (1989) 27–41.
- J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program.93 (2002) 129–171.
- J. Peng, C. Roos and T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms. Princeton University Press (2002).
- C. Roos, T. Terlaky and J.-Ph. Vial, Theory and Algorithms for Linear Optimization. An Interior-Point Approach. Springer Science (2005).
- S.J. Wright, Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA (1997).